
UNCLASSIFIED

AD-A285 422

DSTO
Information Technology Division

EL.CTF--- f•

"RSEARCHE .80RREPORTG

ERL-0800-RR

MODULAR IMPLEMENTATION OF FEATURE EXTRACTION
AND MATCHING ALGORITHMS FOR PHOTOGRAMMETRIC

STEREO IMAGERY

by

James Kershaw and Garry Hamlyn

\\€:<'94m32O58

(.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DTJP?, Q-IT.AL,,.

UNCLASSIFIED

DSTOA*
A U STRA L I A

ELECTRONICS RESEARCH LABORATORY

Information Technology
Division

i -S CRA&IM lI

RESEARCH REPORT
-1 ' ABounced

ERL-O00-RR i J,•• 'ication

MODULAR IMPLEMENTATION OF FEATURE By
EXTRACTION AND MATCHING ALGORITHMS FOR Dist...ition/

PHOTOGRAMMETRIC STEREO IMAGERY
Availability Codes

by Avail andlor
Dit Special

James Kershaw and Garry Hamlyn

SUMMARY

This paper describes the implementation of algorithms for automatically extracting and
matching features in stereo pairs of images. The implementation has been designed to be as
modular as possible to allow different algorithms for each stage in the matching process to be S
combined in the most appropriate manner for each particular problem. The modules have been
implemented in the AVS environment but are designed to be portable to any platform.

This work has been undertaken as part of task DEF 93/163 "Intelligence Analysis of Imagery".
and forms part of ITD's contribution to the Visual Processing research program in the
Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP). A major S
aim of both the task and the research program is to produce software to assist intelligence
analysts in extracting three dimensional shape from imagery: the algorithms and software
described here will form the first part of a module for automatically extracting depth
information from stereo image pairs.

© COMMONWEALTH OF AUSTRALIA 1994
JUNE 94

APPROVED FOR PUBLIC RELEASE

POSTAL ADDRESS: Director, Electronics Research Laboratory, PO Box 1500, Salisbury, South Australia, 5108. 5

ERL-400-RR

UNCLASSIFIED

C "0'*

ERL-O8O-RR UNCLASSIFIED

I'

I

This work is Copyright. Apart from any fair dealing for the purpose of study, research,
criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any Process without written permission. Copyright is the responsibility *
of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,
Canberra ACT 2601.

UNCLASSIFIED

0 *

UNCLASSIFIED ERL-080-RR

CONTENTS

INTRO DUCTION ... I

2 MODULAR STRUCTURE IN FEATURE MATCHING .. 2
2.1 General Comments on Implementation ... 4

2.1.1 Source Code ... 4
2.1.2 Operating System and Platform .. 4
2.1.3 File System Structure ... 4
2.1.4 AVS Data Structures .. 4
2.1.5 Implementing User Defined Functions as AVS Modules 5
2.1.6 Customised "Shapelnference" AVS Module Library 5
2.1.7 On-line Docum entation ... 5

3 FEATURE EXTRACTION .. 6

4 MORAVEC FEATURE EXTRACTION MODULE .. 6
4.1 Description of M oravec Features ... 6
4.2 Im plem entation in AVS .. 7

4.2.1 General ... 7
4.2.2 Source Code and File Systems ... 7
4.2.3 Data Structures .. 8

4.2.3.1 AVS .. 8
4.2.3.2 Other .. 8

4.2.4 Function Descriptions ... 8
4.3 Exam ple Network and Output .. 11
4.4 Comments on Parameter Values and Performance 12
4.5 Future Directions ... 12

5 FEX FEATURE EXTRACTION M ODULE ... 12 S
5.1 Description of FEX ... 12

5.2 Im plem entation in AVS .. 13
5.2.1 General .. 13
5.2.2 Source Code and File Systems ... 13
5.2.3 Data Structures .. 14 5

5.2.3.1 AVS .. 14
5.2.3.2 Other .. 14

5.2.4 Function Descriptions ... 14
5.3 Exam ple Network and Output .. 17
5.4 Comm ents on Parameter Values and Perform ance .. 18
5.5 Future Directions ... 18

6 FEATURE M ATCHIN G .. 18

7 BARNTHOM RELAXATION MATCHING MODULES ... 19
7.1 Description of the Barnthom kelaxation Matching Algorithm 19 0

7.1.1 W eight Initialisation Stage ... 20
7.1.2 Relaxation Stage .. 20

7.2 Im plem entation in AVS .. 21
7.2.1 General .. 21

UNCLASSIFIED iii

ERL-0800-RR UNCLASSIFIED

7.2.2 Source Code and File Systems .. 21
7.2.3 Data Structures .. 23

7.2.3.1 A VS ... 23
7.2.3.2 O ther .. 23
7.2.3.3 Initialisation Stage 23
7.2.3.4 Relaxation Stage ... 24

7.2.4 Function Descriptions ... 25
7.3 Exam ple Network and Output .. 32
7.4 Com ments on Param eter Values and Performance .. 33
7.5 Future Directions ... 33

8 HANNAH M ATCHING M ODULE ... 34
8.1 Description of the Hannah M atching Technique .. 34

8.1.1 Selection of Interest Points ... 34
8.1.2 Unconstrained Hierarchical M atching ... 35
8.1.3 Cam era M odelling .. 35
8.1.4 Epipolar Constrained Hierarchical M atching 36
8.1.5 Anchored M atching ... 36

8.2 Im plem entation in AVS .. 36
8.2.1 General .. 36
8.2.2 Source Code and File System s .. 38
8.2.3 Data Structures .. 38

8.2.3.1 A VS .. 38 • 0
8.2.3.2 O ther .. 38

8.2.4 Function Descriptions .. 39
8.3 Com m ents on Param eter Values and Perform ance .. 44
8.4 Future Developments .. 44

9 CONCLUSION S ... 45

10 ACKN OW LEDGM ENTS .. 46

REFEREN CES .. 47

FIGURES

I M odule and Layer Interaction .. 3

2 Hierarchical Functional Block Diagram for M oravec .. 9

3 Exam ple AVS Network for M oravec .. 11

4 Exam ple Output for M oravec .. 11

5 Hierarchical Functional Block Diagram for FEX 15

6 Exam ple AVS Network for FEX ... 17

7 Exam ple Output for FEX .. 18

8 Hierarchical Functional Block Diagram for Initialisation 25

9 Hierarchical Functional Block Diagram for Relaxation .. 28

10 Exam ple AVS Network for Relaxation M atching ... 32

iv UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

11 Exam ple Output for Relaxation M atching ... 32

12 Example AVS Network Incorporating Hannah Matching Module 37

13 Example Hannah User Interface with Output Display 37

14 Function Hierarchy for Hannah M atching .. 40

APPENDICES

APPENDIX A: SUMMARY OF DATA REPRESENTATIONS .. 49

Input D ata Form at 49

Feature Field D ata Form at ... 49

Flow Field D ata Form at ... 49

APPENDIX B: ON-LINE USER DOCUMENTATION .. 50

AVS ON-LINE HELP PAGE FOR MORAVEC FEATURE EXTRACTION 50

AVS ON-LINE HELP PAGE FOR FEX FEATURE EXTRACTION 53

AVS ON-LINE HELP PAGE FOR INITRELAX(FOCUSCORR) 56

AVS ON-LINE HELP PAGE FOR INITRELAX(FOCUSGEN) 60

AVS ON-LINE HELP PAGE FOR INITRELAX(NN-CORR 64

AVS ON-LINE HELP PAGE FOR INIT-RELAX(NN-GEN) 68

AVS ON-LINE HELP PAGE FOR RELAXATION .. 72

AVS ON-LINE HELP PAGE FOR RELAXATIONNN ... 76 * 0
AVS ON-LINE HELP PAGE FOR WGTDRELAX ... 80

AVS ON-LINE HELP PAGE FOR WGTDRELAXNN .. 84

AVS ON-LINE HELP PAGE FOR HANNAH MATCHING 88

U

UNCLASSIFIED v

ERL-0800-RR UNCLASSIFIED

9
I

I

THIS IS A BLANK PAGE
P S

0

vi UNCLASSIFIED

ILI

UNCLASSIFIED ERL-06OO-RR (,)

0

1 INTRODUCTION

This report describes software developed as part of a major research program to produce
systems to assist analysts in reconstructing size and shape from imagery such as satellite

images or photographs. Shape reconstruction can aid the intelligence community in a variety
of tasks, for example compiling technical intelligence on new systems or developing virtual
reality scenarios such as fly throughs. In particular the ability to determine the shape of
new objects ranging from buildings through to ship propellers is of great help in determining
the properties or functions of such objects. In this area the development of computer packages
to automate various tasks in photogrammetry would significantly increase the productivity
of photogrammetric intelligence analysis. Therefore, as part of DSTO's support to the
Defence Intelligence Organisation (DIO) and other image analysis centres in the ADF, lTD
has undertaken a research program to develop state-of-the-art photogrammetric software
tailored to the needs of intelligence analysts. At present this work is being carried out under

tasks DEF 93/163 "Intelligence Analysis of Imagery" and NAV 93/071 "Image Processing and
Analysis for Navy". The research program is located within the Visual Processing program
in the Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP) and.
forms part of ITD's contribution to CSSIP.

The particular work reported here tackles a major subtask in photogrammetry: the
reconstruction of shape from a pair of images. At present the task of extracting three
dimensional shape informaticn from two spatially disparate images of the same target scene
is not fully automated. Existing systems for solving this problem are only semi-automatic and
require the user to specify matched points and camera parameters. The aim of the current
research program is to minimise the amount of user interaction or a-priori information needed
to match the two images. To date there has been no reliable implementation of a single
robust algorithm for automatic matching that performs well on a broad range of image types
of interest to analysts. Moreover, while a number of algorithms for automatic matching in
particular scenarios have been described in the research literature, little has been done in
the way of systematic tests to verify their actual performance.

Given this situation the Visual Processing program has decided to assemble within a common
environment a number of promising algorithms from the literature for each of the various •
stages in stereo photogrammetry. These algorithms will then be tested separately and in
combination to investigate the individual performance of each algorithm and to identify the
best way to fuse the algorithms together in a final system. This report describes progress to
date on part of this task: in particular it describes and documents the implementation of four
algorithms (Moravec, Fex, Barnthom and Hannah) that can be used in a modular and 0
interchangeable way to carry out the first two steps of the automatic stereo photogrammetry,
namely feature extraction and feature matching.

UNCLASSIFIED 1

,, • • ,a r~a.m 1-,.,-., ,Ualrol llullll~nl mlml~lm l• lml • . .. qI .

ERL-0800-RR UNCLASSIFIED

The structure of the report is as follows. Section two introduces the data representations and

the way that the early layers o' . algorithm interact. Sections three, four and five

describe the feature extraction al;,unthms, while sections six, seven and eight outline the
feature matching algorithms. The present status of the work is summarised in section nine.

Appendix A summarises the form of the common data structures used by the various routines,

while user documentation on each routine is found in Appendix B.

The modules described in this report are implemented under AVS (Application Visualization

System), an image processing and visualisation package produced by Advanced Visual

Systems [11. Nevertheless, while the algorithms described here have been developed in

AVS and with stereo photogrammetry in mind, their implementation has been made as

modilar and self-contained as possible so that the routines can be ported to different

environments or used on other image analysis tasks. Indeed they may also be useful for more

general feature matching tasks in data fusion or similar applications. In particular the

Hannah algorithm described here has already been ported to the KHOROS image processing
system [12] and incorporated in software for automatic image registration that is concurrently

being developed in the Visual Processing program (see [2]).

2 MODULAR STRUCTURE IN FEATURE MATCHING

While the ultimate goal of the Visual Processing program is to produce a general software I 0
package for shape reconstruction, such a package will necessarily consist of a collection of

specialist routines for particular tasks, such as reconstruction of shape from perspective

distortion in a single image or from relative displacements in a stereo pair of images. Each

task can in turn be broken up into various stages consisting of subtasks, with output from one

stage being passed as input to the next stage. Many of these subtasks are common to a number

of different larger tasks, so in the long run it is most efficient to try and identify the modular

structure implicit in existing or new algorithms for shape reconstruction as this will allow

code reuse and quicker construction of algorithms. If such structure can be identified, the
algorithms can then be implemented as a series of self-contained routines linked through

standardised data structures.

In particular shape reconstruction from stereo imagery is almost invariably performed in two

stages: in the first stage significant features (e.g. comers or edges) of the three dimensional

(3D) object being imaged are located in both images; while in the second stage the movements
of the features across the two images is used to infer their actual location in space by

triangulation. The first stage in turn can be split into two subtasks. The first is feature
detection, in which interesting features in each image are identified. The expectation is that

each such feature in an image reflects a corresponding significant feature on the underlying

object, and so will also be present in the other image. The second subtask involves matching 0
the interesting features in one image with those in the other image.

It is, of course, possible to write algorithms that carry out both feature detection and feature

matching in a manner that cannot be easily separated. For example, feedback from the

2 UNCLASSIFIED

UNCLASSIFIED ERL-0800-FRR

matching stage can be used to refine feature identification as in the Hannah matching

algorithm described in section 8. Nevertheless the benefits of taking advantage of any

modular structure are sufficiently great to warrant separating algorithms into self-contained

modules where possible.

One particular benefit of modular development is that it both clarifies the requirements on

data structure and allows greater freedom in their construction. After some discussion, the

Visual Processing program has settled on the following approach. First, internal data

structures in individual modules are specified independently so as to give the most efficient

structure for internal use. Second, standard AVS data structures have been specified for

external transfer of data between modules and to the AVS interface; the formats of these

structures have been chosen for ease of use within AVS. Finally, interfaces (or "wrappers")

are written around each module that translate between the internal and external data

structures.

When applied to feature matching; the above philosophy has led to the following task and

data structure breakdown. First, two modular subtasks have been identified: feature

extraction and feature matching. This in turn means that there are three points at which

common data structures have to be enforced: at input; after feature extraction and before

feature matching; and after feature matching. Figure I shows the conceptual arrangement of

the modules and the data structures. *

Input Data Type inuIetTp
Single Band 8 Bit Grey Scale Single Band 8 ON Grey Scale

MultlBand Floating Point MultiBand Floating Point

Flaw Field
4 Band Floating Point

Figure 1: Module and Layer Interaction

UNCLASSIFIED 3

ERL-O6OO-RR UNCLASSIFIED 6

2.1 General Comments on Implementation

This subsection outlines implementation aspects that are common to all modules, and

should be read in conjunction with the implementation notes provided (in later

sections) for individual modules.

2.1.1 Source Code

Individual modules have been implemented as far as possible as standard

Kernighan and Ritchie (K & R) C programs [91, using the C compiler bundled
with SunOS 4.1.3.

All AVS-specific code has been excluded from each "core" module to improve

portability. To this end, AVS-specific interfaces are provided to handle the
input and output and make the necessary conversions to and from generic C

data structures (for example, images are converted from AVS fields to
standard 2D or 3D arrays as appropriate). Although this practice introduces
overheads in run time and computer memory usage, the authors believe that

the improvement in code portability outweighs any disadvantages.

It is proposed to use the Unix Source Code Control system (SCCS) as a

configuration management tool for all AVS shape inference code, however
arrangements for this have not yet been formalised.

2.1.2 Operating System and Platform S
Each module has been successfully compiled and run on a Sun SPARCStation

10 under SunOS 4.1.3.

2.1.3 File System Structure
All source and executable files for the modules are contained in subdirectories
under the ii3:/gig3c/users/avs directory on the ITD network. This disk (and
server) is physically located in the Image Information (II) Section of
Information Management (IM) Group, ITD in 79 Labs Salisbury. For a listing

of all the relevant files for each module please refer to the detailed module
descriptions later in this report.

2.1.4 AVS Data Structures
The feature extraction modules output one feature field for each input image.

The feature field is represented within AVS as an AVS 2D field of vectors of •
floating point values, alternatively it can be thought of as a multi band

image in which each band is a collection of floating point values. The field
contains a reproduction of the original image in the first band. If no feature
has been detected at a given pixel, the remaining bands contain zeros,

0

4 UNCLASSIFIED

. .

UNCLASSIFIED ERL-0800-RR

otherwise they contain a list of the attributes of the feature at this location.

The feature matching module takes in two feature fields and returns a single
flow field which represents the relation between pointh in the two feature
fields. The flow field is an AVS 2D field of vectors of four floating point
values (or again an image of four floating point bands). The first two bands

contain representations of the two original images. If a pixel location in the
first image has no matched feature then the third and fourth bands contain a
value representing "No Match", otherwise they contain the vertical and

horizontal displacements from the particular pixel to the location of the
corresponding feature in the second image. A summary of these formats is
given in Appendix A.

2.1.5 Implementing User Defined Functions as AVS Modules
AVS requires at leas, three functions to enable a user defined function to be
executed under the AVS system. These are art initialisation function which
tells AVS which modules are included in the code block, a description
function which identifies the module to AVS and declares its name, I/O ports
and parameters, and a computation function which actually performs the

computational work of the module, using the input data and parameters to
produce output of some sort. AVS invokes this function when the AVS flow
executive is active and when the module's input data or parameters change.
In the implementation covered in this report the computation function
performs the necessary conversions to and from generic C structures and calls

the user supplied function(s).

2.1.6 Customised "Shapelnference" AVS Module Library
A customised module library (named "Shapelnference") for use with the AVS
Network Editor module palette has also been created. It is intended that all
AVS shape inference modules developed should be added to this library as
they are completed. The description file for the library is
ii3:/lgig3c/userslavs/module-library/Shapelnference. In order for this to be S
loaded automatically at startup, AVS users should create a file called .at'sre
in their home directory and insert the line

ModuleLibraries
/gig3c/users/avs/module_library/ShapeInference 0

(note that this will override the loading of the default module libraries -
these must also be listed if the user wishes to have them made available as
well).

2.1.7 On-line Documentation
On-line documentation has also been provided, and can be accessed in the
same manner as standard AVS documentation (bring up the Module Editor
window by clicking with the. middle or right mouse button on the small square

UNCLASSIFIED 5

(
.*

ERL-0800-RR UNCLASSIFIED

on the module icon; then click on the Show Module Documentation button). To

ensure that the help file is located correctly, the user needs to either set the
Unix environmenw variable AVSHELP_PATH to /gig3c/users/avs/help, or
alternatively include the line

HelpPath igig3c/users/avs/help

in the .avsrc file in their home directory. A copy of each module's on-line

help text file is contained in Appendix B

3 FEATURE EXTRACTION

Feature extraction consists of identifying the position and properties of features in an image

such as points, lines or regions. The idea is that these image features correspond to features of
the underlying 3D scene which will be identifiable in both images. If this is true, then point
matching can be performed and the true location in space of the underlying features can be
obtained by triangulation. Each feature has an attached vector giving its position and
associated properties. For instance, a point might be characterised by its difference from its
neighbourhood, a line may have the properties of length, angle, curvature and width, and a

region might have values of texture, area, circumference and orientation.

To date two different feature extraction modules have been implemented. They are a point

based feature extractor (Moravec, described in section four) which finds feature points, and an
edge based feature extractor (FEX, described in section five) which extracts straight line
segments. The modules are independent and interchangeable, although, of course, they
cannot be mixed together arbitrarily. For example, the left and right feature extraction
modules must both return Moravec features, or FEX features, but cannot return one of each
type. As described in the previous section, the extraction modules take in a single grey level
image and return a floating point feature vector of indeterminate length. Note that the
vector length is predefined for each feature extractor, but the generic feature format does not
constrain the length of feature vectors.

4 MORAVEC FEATURE EXTRACTION MODULE

The Moravec feature extraction module (henceforth called Moravec) is based on the Moravec
feature operator described in [11].

4.1 Description of Moravec Features

Moravec features are point based features determined by the "Moravec interest" of a
point. The interest is a measure of how much the point stands out from its local
neighbourhood in a grey scale image. The two extreme cases are a white pixel on a

black background or a black pixel on a white background, which have the maximum
interest value, while a pixel which is exactly the same shade as its local

6 UNCLASSIFIED

S "• -= -= -• = • i i 0 0

UNCLASSIFIED ERL-0800-RR

neighbourhood, or even a line passing through the neighbourhood, has zero interest
which is the minimum value. Interest values are calculated by the following local

interest operator:

2

X:(1(x,y) - I(xy + i)) 2

2

Ix(I(xy) - l(x + i,2y))
M(x, y) = mrin ,•2

X(I(x,y) - I(x + iy + i))2

i=-22

Y (I(x,y) - I(x + i,y - i)) 2
i=-2'

where l(x,y) is the image point grey level value at the pixel location (x,y) and

M(x,y) is the Moravec interest value at the point (x,y). A five by five pixel
neighbourhood has been chosen for this module.

Once interest values have been calculated for every point in the image, an initial

collection of features are formed by setting the interest value to zero for all points

which are not local maxima of the interest function. A user specified number of feature
points are then selected from the remaining feature points by retaining those with the 1 0
highest interest values.

4.2 Implementation in AVS
S

4.2.1 General
Refer to subsection 2.1 for general information on source code, operating
system, file systems, data structures and AVS module structure.

4.2.2 Source Code and File Systems
The source file for this module together with a Makefile are contained in ie

directory ii3:/gig3c/users/avs/modulessrc/moravec on the ITD netwo k
The relevant files are:

Makef i le. avsmoravec S
avsmoravec.c

The binary executable avsmoravec is located in the directory

ii3:/gig3c/users/avs/modules-bin.

UNCLASSIFIED 7

C

ERL-0800-RR UNCLASSIFIED

4.2.3 Data Structures

4.2.3.1 AVS

The AVS field data structure is used to pass both image and feature

information between modules. These fields are basically two
dimensional arrays whose individual elements are vectors of some

fixed length. The input data structures are basic images (each

element contains one value only - the grey level). The output data
structures are feature fields with each element in the two

dimensional array containing two values, where the first value is
the pixel value in the original image at this location, and the

second value is the Moravec interest value at this point. For more
information see Appendix A and Appendix B.

4.2.3.2 Other
Within the functional section of the module data is handled using

standard C constructs. Given the nature of the Moravec interest
operator, the notion of a two dimensional array with a vector at
each position has been preserved. The implementation of this is
actually as a triply indirected pointer (referencing dynamically
allocated memory) which is equivalent to a three dimensional
array. The first two dimensions hold the two dimensional data • 0
array while the third dimension allows access to individual

elements of the vector. Floating point values are used for all
calculations. The declaration and method of access is described:

Declaration: ,t *'*Data;
Access: Data[i][j][k]

(equivalent to) *(*(*(Data+i)+j)+k)

4.2.4 Function Descriptions

The following descriptions are not intended to be an exhaustive

documentation of functional interactions and dependencies, rather they
should be used as a guide to understanding and maintaining the module.

Figure 2 gives an hierarchical description of the f)ctions and their
dependencies.

8 UNCLASSIFIED

0 0

UNCLASSIFIED ERL-0800-RR

AVS Kernell

AVS Init Moravec Moravec
Modules Compute Descript

Allocate Copy Calculate Prune for Prune
Feature Image to Feature Maxima Feature
Space Feature Strengths Points

Figure 2. Hierarchical Functional Block Diagram for Moravec

Moravec-Compute

source code file: avs-moravec.c

called by: AVS kernel

calls to: AllocateFeatureSpace
CopyImage-toFeature • 0
CalculateFeatureStrengths

PruneForMaxima

PruneFeaturePoints

AVS routines

Description:

This is the computation function for the AVS module and is the entry point

for the user supplied code.

Allocate_FeatureSpace

source code file: avs-moravec.c

called by: MoravecCompute

calls to: AVS routines

malloc

Description:

This routine allocates the required space for the output feature field(s) and

also allocates space for the internal C-standard representation. It also

calculates the maximum number of feature points as defined by the operator.

UNCLASSIFIED 9

(.
S' I• I -i - -0 0

ERL-O0O-RR UNCLASSIFIED

CopyjlmagejtoFeature
source code file: avs-moravec.c

called by: Moravec-Compute
calls to: AVS routines

Description:

This routine copies the input image(s) to the first band of the output field and
the first band of the working feature set.

CalculateFeatureStrengths
source code file: avs-moravec.c
called by: MoravecCompute
calls to: None

Description:

This routine calculates the Moravec interest value at each point in the
working image and stores that value in the second band. The values are then p
normalised to the interval [0,11 by dividing by the maximum value. The

actual operator is described in subsection 4.1.

PruneForMaxima

source code file: avs-moravec.c • 0
called by: Moravec-Compute
calls to: None

Description:

This routine scans the Moravec interest values and sets all values to zero that
are not a local maxima. This is done by comparing the current value with
those in the pixel's immediate neighbourhood. If any other point in the
neighbourhood is bigger, then the current value is set to zero.

Prune_Feature_Points
source code file: avsjmoravec.c
called by: Moravec-compute
calls to: None

Description: S

This routine performs an iterative search for a threshold interest value
which leaves the specified number of feature points (to within a five percent
margin). The method involves toggling interest values between positive for
above threshold and negative for below threshold and counting the number of
positive feature points. The iterative search for the correct threshold is
limited in duration and is basically the bisection method. Finally, all
negative values are set to zero, leaving only the positive selection of interest
points.

10 UNCLASSIFIED

UNCLASSIFIED ERL-O800-RR ,

4.3 Example Network and Output

jI

ip ra•f PrmW
Figure 3: Example AVS Network for Moravec

Figure 4: Example Output for Moravec. The Moravec interest
value of selected "interesting" pixels in the input image (left) is

indicated by variation in output pixel intensity (right).

UNCLASSIFIED 11

ERL-0800-RR UNCLASSIFIED

4.4 Comments on Parameter Values and Performance

There are two user selectable parnmeteis associated with this module (a detailed

explanation of these appears in Appendix B).

In general the Moravec operator extracts reasonable features; typical values for the

parameter FPs (fraction) should range from 0.0001 to 0.05 in order to extract between 20

and 8000 features for a 512*512 image.

4.5 Future Directions

Further changes to the algorithm may include a change of output format to represent a

list of features. A user definable window size for the Moravec neighbourhood may also

be considered.

5 FEX FEATURE EXTRACTION MODULE 0

The second feature extraction algorithm implemented is the edge based feature extraction

process (hereafter referred to as FEX) described in [8]. The implementation is based on the

code written by A. Etemadi [5] as part of his "perceptual groupings" suite.

5.1 Description of FEX

FEX is an algorithm for extracting line segments from an edge segmented image. The

edge segmented image is the result of any line or edge detection algorithm which

leaves thinned edges after the fitering process, where thinned edges have a width of

only one pixel. Examples of such edge filters are Canny's edge filter [4] and Sobel's

edge filter [13]. This process is performed externally to the FEX module.

The edge pixels that remain after the edge filtering process are collected into groups of

minimally connected pixels called chains by following edges along touching edge

pixels, removing all but one branch pixel at a junction. The extra branches then become

their own individual chain. The actual method used is to label each pixel in a string of

pixels to a unique string identifier. At a junction the algorithm follows only one of the 0

paths (which path is not important), labelling each pixel. The branch which has not

been so labelled will be detected later and given its own unique labelling, stopping

when it reaches the branch point where connecting pixels already have a label.

These chains of pixels are processed into straight line segments by starting at one end of 0

the chain and incrementally increasing the number of pixels in the segment until the

maximum perpendicular displacement between the segment and the secant passing

through the end points of the segment passes some threshold. Once this threshold is

12 UNCLASSIFIED

* .

UNCLASSIFIED ERL-0800-RR

passed the segment is complete and the last point becomes the first point of the next

segment.

These segments are then characterised by three parameters (a length and two variance

values relating to the straightness of the line segment), which are stored in the last

three bands of the output feature array.

5.2 Implementation in AVS.

5.2.1 General
FEX is an algorithm which was down loaded via ftp with minimal changes

being made to it in order to enable it to be invoked from AVS. Some of the

simpler subroutines were recoded to work on the array based format, but the

extraction and classification of segments was left in the original code, with

conversion routines written to enable communication between the modules
working on arrays and the modules working on lists.

Refer to subsection 2.1 for general information on source code, operating

system, file systems, data structures and AVS module structure.

) 0
5.2.2 Source Code and File Systems

The source files together with a Makefile are contained in the directory

zJ3:/gig3c/users/avs/modulessrc/fex on the ITD network. The relevant files

are:

Makefile.avsfex

AddElmList.c

CircleLeastSq.c

CopyList.c

CreatList.c

CreateStringList .c

DestList .c

ElmNumList.c

EmptyList.c

FEX.c

LineLength. c
LineSegColIntercept.c

LineSegRowIntercept .c

LineSegTheta.c

LinkSegments.c

PtLinePerpIntercept .c

SizeList .c

StringToSegments.c

UNCLASSIFIED 13

* •

ERL-OSOO-RA UNCLASSIFIED

avs-f ex. c
FEX. h

LPEG. h

Liate.h

Listehacros .h

ListeP.h

The binary executable avs-fex is located in the directory
ii3:/gig3c/users/avs/modulesbin.

5.2.3 Data Structures

3.2.3.1 AVS
The AVS field d ta structure is used to pass both image and feature
field information into and out of this module (refer subsection 2.1.4

and Appendices A and B). The input data structures are basic

images (each element contains one value only - the grey level). The

output data structures are feature fields with each element in the

two dimensional array containing four values, where the first

value is a reproduction of the original image and the other values

are the FEX characteristic parameters for edges.
p.•

5.2.3.2 Other
Within the functional section of the module data is handled using
standard C constructs as outlined in subsection 4.2.3.2. Within

Etemadi's original code the data is stored mainly as list structures
which are described in the header files.

5.2.4 Function Descriptions
The following descriptions are not intended to be an exhaustive

documentation of functional interactions and dependencies, rather they

should be used as a guide to understanding and maintaining the module.

Figure 5 gives an hierarchical description of the functions and their

dependencies.

o

14 UNCLASSIFIED

0@

UNCLASSIFIED ERL-0800-RR ,

AVS Kernel
f" . 1

AVS Init FEX FEX
Moduw - OescrPt

rCreate Strig Srng to Unec Line Line Seg Desttist

ist Segmts Segments Length Theta

Figure 5: Hierarchical Functional Block Diagram for FEX

Fexscompute

source code file: avs-fex.c

called by: AVS kernel
calls to: Copyjto Output

Clean
Removejsolated
Link-Open
Link-Closed
ExtractFeature

Description:

"Fex-compute" is the computation function (refer subsection 2.1.5) for this
AVS module, and as such is the entry point for the user supplied code.

CopyjtoOutput

source code file: a''s-fex.c
called by: iex-compute
calls to: AVS routines

Description:

This routine allocates memory for the output space and working space, and
copies the image data into the first two bands of each.

UNCLASSIFIED 15

S... . . • • .,•,,, =m .,•= = =m = • .= • m m UM II II m I • " I ° • I - I I '! • l " .

ERL-OWOORR UNCLASSIFIED

Clean
source code file: avsfex.c
called by: Fexcompute
calls to: None Ilk)

Description:

This routine places zeros around all of the borders of the images and reduces
the thinned edges (as input) to their eight connected minimum.

Remove-Isolated
source code file: avsfex.c
called by: Fexcompute
calls to: None

Description:

This routine scans the edge image for any isolated edge point and removes
them (by writing zero to that position).

LinkOpen
source code file: avsfex.c
called by: Fexcompute P 0
calls to: None

Description:

This routine follows connected chains of pixels which have a distinct end
point. Each point in the chain is given a value corresponding to the unique P
identifier of that chain. Chains containing less than the specified number of
pixels are removed.

LinkClosed
source code file: avsfex.c
called by: Fexcompute
calls to: None

Description:

This is the same as Link-Open, although this handles the case of closed
pixel chains as well.

ExtractFeature

source code file: avsfex.c •
called by: Fex_compute
calls to: FexRoutine

16 UNCLASSIFIED

0 0

UNCLASSIFIED ERL-08O-RR

Description:

This is a jumping off point to the functional part of the algorithm

FexRoutine

source code file: FEX.c

called by: Extract-Feature

calls to: CreateStringList

StringToSegments
Linýxegmnts

LineLength
LineSegTheta

DestList

Description:

This routine performs the actual calculation of location and values of the

edge features. It is a slight modification of the original code by Etemadi,

with the main difference being the call to CreateStringList which has been

modified to convert the array based information to a list based

representation native to Etemadi's code as well as performing its original

function (to create the string lists). This routine also modifies the output or

reporting stage by writing the feature vectors back to the working array.

5.3 Example Network and Output

n1,M -'-'-WW " WVW

Figure 6: Example AVS Network for FEX

UNCLASSIFIED 17

* 0

ERL-0800-RR UNCLASSIFIED

Figure 7: Example Output for FEX. The first band (top let)t ontain', d

copy of the input image while the remaining bands contain the extractd

edge segmnent parameter values.

5.4 Comments on Parameter Values and Performance

Ihere are two user selectable parameters associated with this module (a detailed

explanation of these appears in Appendix B).

Reasonable values for parameters Threshold and Min Length are about 50 and 10t

respectively. As expected the number of features extracted depends very much on the

characteristics of the image.

5.5 Future Directions

Further changes to the algorithm may include a change of output format to represent a

list of features.

6 FEATURE MATCHING

Feature matching involves taking the sets of feature vectors of both images and attempting to

match each feature in one image to its corresponding feature in the other image. [wll result is

a tet ot points that correspond to each other, or a set of points with the appropriate

18 UNCLASSIFIED

. • mi i | |* i0

UNCLASSIFIED ERL-0800-RR

displacement to its matching point in the other image. There are, however, a number of

problems to overcome in achieving this feature matching: features may exist in one image and

not in the other due to occlusion of the feature by other objects; distortion due to a change of

aspect or perspective can occur; lighting conditions may be different, or the objects might

have a high degree of spectral reflection making the perceived intensity dependent on

viewing position; lens distortion may not be appropriately compensated at all points in the

focal plane, and lens distortion may be dependent on the position of the feature.

At this stage the software suite contains only one matching algorithm capable of handling

the generic feature format. This algorithm is the relaxation scheme proposed by Barnard

and Thompson [3] and is implemented here as a set of modules. For convenience the algorithm

(and associated modules) will be hereafter reterred to collectively as Barnthom.

Complementing these is a matching module based on Hannah's algorithm [7) (see section 8),

which takes the original images and performs the feature extraction and feature matching in

the one module (due to difficulties in separating the two phases for this particular

algorithm). The Hannah module works with the generic image format and creates a generic

flow field, both of which are described in Appendix A.

7 BARNTHOM RELAXATION MATCHING MODULES

The Barnthom modules are variants of the weight initialisation and probability relaxation

algorithm described by Barnard and Thompson. These implementations differ from the

description in the original paper 131, in that they are not constrained to any one feature type,

the initialisation stage has been separated out from the relaxation stage, and various

different methods of generating initial matches and neighbours have been used. The modules

are also capable of accepting feedback in the form of local or general flow information, which

may be used to more accurately specify search areas.

7.1 Description of the Barnthom Relaxation Matching Algorithm

The Barnthom relaxation matching algorithm requires two feature fields of the same

dimension as inputs. The basic method involved is to make some initial estimate of the

probability of a given feature in the first image matching each feature in the second

image which lies within same predefined region in the second image. Calculated with

this initial probability is a disparity which measures the difference in location (with

respect to the image coordinates) of the two features.

Once the initial probabilities have been calculated the relaxation phase is entered.

The relaxation scheme is conceptually described as cdlows. For each potential

disparity for each feature in the first image, find out how many of its neighbours (in a

local region about the primary image point) have potential matches with a similar

disparity If a large number of neighbours do have a similar disparity then this

potential match is more likely to be the correct mrtch. If only a very small number of

the feature's neighbours have a similar disparity then the probability of this

UNCLASSIFIED 19

ERL-0800-RR UNCLASSIFIED

potential match being the correct match decreases. This relaxation process is

performed iteratively a specified number of times, hopefully often enough to settle the

disparity field into a stable (and correct) pattern.

A more formal description of the algorithm can be found in Barnard and Thompson [3] or

Hildebrandt [8].

The implementation of this algorithm allows for a number of different weight

initialisation schemes to be chosen, and also a number of different relaxation schemes,

each with its own module. A naming convention (detailed below) has been adopted to

uniquely identify each different combination.

7.1.1 Weight Initialisation Stage
The four methods for weight initialisation consist of two methods where

feature similarity is based upon the sum of squares of differences over a five

by five mask applied to the initial grey level image, and two methods for

which feature similarity is based on the squared Euclidean distance between

the features as described in feature space (in other words, the sum of the

squares of differences between the elements of the two feature vectors).
Within each of these two major categories of weight initialisation are

modules which use either a uniform specified window size in pixels for

choosing the valid possible matches, or a uniform number of possible matches, • 0
choosing the specified number of closest matches as the valid possible

matches.

In order to differenti-te the four methods of weight initialisation a module

naming convention has been adopted. The four initialisation modules are

called Init-Relax(focusscorr), InitRelax(focus.gen), Init-Relax(NNscorr)
and InitRelax(NN-gen). The substrings "NN" and "focus" indicate

respectively whether a specified number of closest matches or a specified

search window size are used to determine the valid possible matches.

Substrings "corr" and "gen" indicate respectively whether feature similarity
is based on a comparison of windowed areas on the initial grey level images

or on the squared Euclidian distance in feature space.

All four modules have the capability of accepting a flow field, where the S
flow vectors give a local estimate of the centre of the search area for possible

matches. If no flow information is available then six parameters provide a

two dimensional flow estimate within the image, which is then used to
estimate the centre point for searching.

0

7.1.2 Relaxation Stage
The four methods for relaxation consist of two modules for which the support

neighbourhood is defined as a constant sized window (specified in pixels),
and two modules where the support neighbourhood is defined as a specified

20 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

0
number of closest neighbouring features. Within each of these two major
categories there is a module which applies a uniform support weighting to
each neighbour in the neighbourhood, and a module which applies a
gaussian support weighting, based on the distance from the feature in terms of

pixels or number of closer neighbours, which ever is relevant.

The four modules in this stage are named Relaxation, RelaxationNN,
Wgtd-Relax and Wgtd-Relax-NN. The "NN" substring again denotes that
the support neighbourhood is defined via a specified number of closest
neighbouring features rather than a specified window size. The "Wg~d"
substring indicates Gaussian support weighting.

7.2 Implementation in AVS

7.2.1 General
Refer to subsection 2.1 for general information on source code, operating
system, file systems, data structures and AVS module structure.

7.2.2 Source Code and File Systems
The source files together with a Makefile are contained in the directory
ii3:/gig3c/users/avs/modules-src/relaxation on the ITD network. The

relevant files are: P 0

relaxation.h
Initiali-ze/

initrelaxconversion.c

NNcorr/ 0

Makefile

avs-initrelaxationNN corr.c
initrelaxation-conversion.c

init-relaxationNNcorr.c 0

relaxation.h
NN-gen /

Makefile
avs-initrelaxation_NNgen.c

initrelaxationconversion.c •

initrelaxation-NN-gen.c

relaxation.h

focuscorr/

Makefile

avs-initrelaxationfocuscorr.c 0

init-relaxation-conversion.c
init-relaxation focus-corr.c

relaxation.h

focus-gen,/

UNCLASSIFIED 21

ERL.0800-RR UNCLASSIFIED)

Makef ile

avs-init-relaxation_focus-gen.c

init-relaxation-conversion.c

init-relaxation~focus-gen.c

relaxation. h

relaxation/

relaxation-conversion .c

relaxation. h

Barnthom_Relax!

Makefile

avs-relaxation.c

relaxation. c

NNRe lax!

Make file

avs-relaxation .c

relaxation. c

Weighted_BT_Relax!

Makefile

avs-Weighted_relaxation.c

Weighted-relaxation.c

WeightedNNRelax!

Makefile

avs-weighted nn_r-elaxation.c

weighted_nn_relaxation-c

The binary executables are located in the directory
ii3:/gig3c/users/avs/inodules-bin:

avs-init-relaxationMNNcorr
avs-init-relaxation..NN-gen
avs-imit-relaxation_focus_corr
avs-imit-relaxation-focus-gen
avs-relaxation
avs-relaxationNN
avsWeighted-relaxation
avs-weighted-relaxation-NN

Help files (text) are located in the directory ii3:/gig3c/users/az's/hce~p:

Init-Relaxation_-NN -corr.txt

Init..Relaxat ionM~gen.txt

Init-Relaxation-focus-corr.txt

Init-Relaxation-focus-gen .txt

Relaxation.txt

RelaxationNN. txt

WeightedRelax.txt

Weighted_RelaxM.N.txt

22 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

7.2.3 Data Structures 0
7.2.3.1 AVS

The AVS field data structure is used to pass both the incoming
feature fields and the outgoing flow fields. The feature fields are
effectively two dimensional arrays with each element of the array
containing an arbitrary length vector (defined for each feature
type). The flow field is also a two dimensional AVS field, where
each element contains four values (primary image, secondary
image, vertical displacement between features, horizontal
displacement between features). These data structures are
described in more detail in Appendix A.

7.2.3.2 Other
Within the modules there are a number of data structures used to
contain information. There are three dimensional arrays to handle
working copies of the input and output fields as well as
dynamically allocated arrays to handle the intermediate data.
The following data structures and their logical interpretation are
important:

7.2.3.3 Initialisation Stage *

declaration: float ***Feat1, ***Feat2;
access: Featl[i][j][ll = *(*((Featl+i)+j)+k);
These are dynamically allocated three dimensional arrays which
hold copies of the input feature fields. The first two dimensions S
correspond to pixel location, while the third index accesses the
feature vector. The first element of the third dimension holds the
initial grey image, the second and further elements hold the actual

feature parameters. See also Appendix A.
S

declaration: float ***Flow1n;
access: FlowIn[i]llII] = *(*(*(Flow-1n+i)+j)+l);
This is exactly a representation of a flow field as defined in

Appendix A.
0

declaration: float *ProbTable;
access: Prob-Tablelfli[f21[I] = *(*(*(Prob-Table+fl)+f2)+l);
This dynamically allocated three dimensional array will hold the
probability initialisation for the later relaxation process. The
first dimension is accessed by the feature labels in the primary

image. The second dimension is accessed by the match number of

the possible match of the feature in the primary image to the
feature(s) in the secondary image. The third dimension is three

UNCLASSIFIED 23

-• ~ * * m- i m •] - i] •l u •0 *

ERL-0800-RR UNCLASSIFIED ()

elements long and holds the horizontal disparity between the
primary feature and its possible match, the vertical disparity
between the feature and its match, and the initial estimate of the

probability of that match being the actual match. The first two

positions in the second dimension are reserved for other
information. The first position (ProbTablelfl][O]Il]) holds the

horizontal location of the primary feature, the vertical location of

the primary feature and the number of possible matches for this

feature (i.e. the length of the second dimension). The second

position (ProbTable[fl][1][l]) holds the probability of not having

a valid match.

struct List-Node I
int dX;
int dY;
float ProbMatch;
struct ListNode *NextNode;

I;
This structure is used to set up temporary linked lists to hold the

possible matches for each primary feature. This list is copied to

the ProbTable. When Nearest Number of matches is the chosen

technique, this list is used with in-order insertion to quickly find

the specified number of closest matches.

7.2.3.4 Relaxation Stage

declaration: float ***ProbTable;
access: ProbTablelfll[f21[l] = *(*(*(ProbTable+fl)+f2)+l);
This dynamically allocated three dimensional array will hold the
probability initialisation for trie later relaxation process, and also
holds the updated probabilities throughout the relaxation. The
first dimension is accessed by the feature labels in the primary
image. The second dimension is accessed by the match number of
the possible match of the feature in the primary image to the
feature(s) in the secondary image. The third dimension is three

elements long and holds the horizontal disparity between the S
primary feature and its possible match, the vertical disparity

between the feature and its match, and the initial estimate of the
probability of that match being the actual match. The first two
positions in the second dimension are reserved for other

information. The first position (ProbTable[fl][011l1]) holds the 0
horizontal location of the primary feature, the vertical location of
the primary feature and the number of possible matches for this
feature (i.e. the length of the second dimension). The second
position (ProbTable(fl][(11(]) holds the probability of not having

24 UNCLASSIFIED

- • ,qwmm m mammam~mlmmmamm~mN lia " • ,•0 0

UNCLASSIFIED ERL-O800-RR

I. a valid match most of the time, but holds the most likely match
information at the end of the module.

declaration: float "ProbTemp;
access: ProbTempifllif2I - '('(ProbTemp+fl)+f2);

(, This array is the same as ProbTable, except that it only holds the
probability of match information. It is used as temporary storage
of updated probabilities before being copied back into ProbTable
at the end of each iteration.

struct NeighNode I
int Neighbour;
struct NeighNode *Next;
") "Neighbourhood;

access: *Neighbourhoodlfl];

This array of pointers to structures is an array of linked lists,
accessed by the feature of interest, which holds the neighbours of 5
the feature of interest (as an index into ProbTable).

7.2.4 Function Descriptions
As in previous sections, the following descriptions are not intended to be an
exhaustive documentation of functional interactions and dependencies, rather P 0
they should be used as a guide to understanding and maintaining the module.

Figure 8 gives an hierarchical description of the functions and their
dependencies for the four initialisation modules. The function names may
vary slightly from those specified in the descriptions that follow.

IAVS Kerel

AVS mnit lnitRelaxation InitRelaxation
Modules Compute Descript

Allocate Space Init Probe COPY out DeAllocate

AVS Avs AVS

Find Matches Transfer List Renew List

Figure 8 : Hierarchical Functional Block Diagram for Initialisation

UNCLASSIFIED 25

• • i• ~ mis~ lil lslll lll l lilli I• • •e*. .0

ERL-0800-RR UNCLASSIFIED ().0
InitRelaxation_compute
source code file: avsinitrelaxation_<focus /NN>_<corr/ gen>.c

called by: AVS kernel

calls to: Allocate-Space
InitProbs
Copy-Out
DeAllocate

Description:

InitRelaxationscompute is the computation function (refer subsection 2.1.5)

for the AVS module and is the entry point for the user supplied code.

Allocate-Space
source code file: init-relaxsconversion.c
called by: InitRelaxation-compute
calls to: AVS

Description:

This routine allocates space for and copies the original images to the working

data structures.

Init_Probs
source code file: initrelaxation_<focus/NN>_<corr/gen>.c
called by: InitRelaxation-compute
calls to: FindMatches

TransferList
Renew-List

Description:

This routine loops through all of the primary features finding the possible

set of matches for each feature (with calls to Find.Matches). It then calls

TransferList which calculates the initial probabilities and writes these S
values to the array data structure.

FindMatches
source code file: initrelaxation_<focus/NN>_<corr/gen>.c

called bv: Init_Probs S
calls to: None

26 UNCLASSIFIED

UNCLASSIFIED ERL-O800-RR

Description:

This function scans through the secondary image looking for any features
which may be considered to be valid matches to the primary feature in

question. The actual method for determining validity depends on whether it

is a "focus" or a "NN" initialisation module. The result is a linked list of

valid match points.

Transfer..List
source code file: initrelaxation_<focus/NN>_<corr/gen>.c
called by: Init_Probs
calls to: None

Description:

This function takes the linked list of valid match points found in

"TransferList" and for each match calculates the initial probability of
match (the method being dependent on whether the module is a "corr" or a
"gen" type initialisation module). These match points are then written into
the Prob_Table array structure used for passing the information.

RenewList J 0
source code file: init-relaxation_<focus/NN>_<corr/gen>.c
called by: Init_Probs
calls to: None

Description:

This function removes and frees the elements of the linked list found in
"Find-Matches".

Copy-Out
source code file: initrelax_conversion.c
called by: InitRelaxation-compute
calls to: AVS

Description: S

This function creates space for the output data structures and copies the

information calculated in "InitProbs" (ProbTable) to the output.

DeAllocate S
source code file: init-relaxconversion.c
called by: InitRelaxation-compute

calls to: AVS

UNCLASSIFIED 27

0 0

ERL.O.O-RR UNCLASSIFIED

Description:

This routine cleans up the intermediate data structures and frees up any

dynamically allocated memory.

Figure 9 gives an hierarchical description of the functions and their

dependencies for the four relaxation modules. The function names may vary
slightly from those specified in the descriptions that follow.

AVS Kernel

AVS AVt Reaxaio

Get NSpace Get Indicate Relax Probs Most Destroy 0 0
Neighb'hood Complexity Probable NLests

Make Node Insert Node Prune List

Figure 9: Hierarchical Functional Block Diagram for Relaxation

Relaxation-compute
source code file: avsrelaxation.c, avsrelaxationNN,

weighted-relaxation.c,

weighted-relaxationNN.c

called by: AVS kernel
calls to: Allocate-Space

Relaxation
Copy-Out

Destroy

Description:

"InitRelaxation-compute" is the computation function (refer subsection
2.1.5) for the AVS module and is the entry point for the user supplied code.

28 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

Allocate-Space
source code file: relaxation-conversion.c
called by: Relaxation-compute

calls to: AVS

Description:

This routine allocates space for and copies the original information to the
working data structures.

Relaxation
source code file: relaxation.c, relaxationNN.c

Wgtd-relaxation.c, Wgtd-relaxationNN.c

called by: Relaxation-compute
calls to: GetNSpace

Get-Neighbourhood
Indicate-Complexity
RelaxProbs
Most-Probable
DestroyNLists

Description:

This routine is the main entry point to the actual working code, and is used
basically to make the appropriate calls to the various tunctions.

GetNSpace
source code file: relaxation.c, relaxation_NN.c

Wgtd.relaxation.c, Wgtd_relaxationNN.c

called by: Relaxation S
calls to: None

Description:

This routine creates space for the neighbourhoods. S

GetNeighbourhood
source code file: relaxation.c, relaxation-NN.c

Wgtd-relaxation.c, Wgtd-relaxationNN.c
called by: Relaxation 0
calls to: MakeNode

Insert-Node
PruneList

UNCLASSIFIED 29

ERL-O600-RR UNCLASSIFIED

Description:

This routine finds the set of neighbouring features to each feature and stores
them in the neighbourhood array. The specific algonthm depends on which
module is being used.

Indicate-Complexity
source code file: relaxation.c, relaxationNN.c

Wgtd-relaxation.c, WgtdrelaxationNN.c
called by: Relaxation
calls to: None

Description:

This routine measures the complexity of the algorithm and estimates how
long the module will take to complete (and depends on arbitrary

measurements for a single SPARC 10 computer with an unknown environment).

RelaxProbs
source code file: relaxation.c, relaxationNN.c

Wgtd-relaxation.c, Wgtd-relaxationNN.c
called by: Relaxation
calls to: None

Description:
S

This routine performs a single update and normalise step using the
neighbourhood relaxation described by Barnard and Thompson [3].
Variations include some weighting on the support dependent upon distance
from the central feature of interest.

@
MostProbable
source code file: relaxation.c, relaxationNN.c

Wgtd-relaxation.c, Wgtd-relaxationNN.c

called by: Relaxation
calls to: None

Description:

This routine places the most probable match point into the second position of
the Prob-Table, for later extraction and insertion into the output flow field.

30 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

Destroy-NLists

source code file: relaxation.c, relaxation.NN.c

Wgtd-relaxation.c, Wgtd relaxationNN.c

called by: Relaxation

calls to: None

Description:

This routine frees the space used in the neighbourhood lists.

Copy-Out

source code file: relaxation_conversion.c

called by: Relaxation_compute

calls to; AVS

Description:

This function creates space for the output data structures and copies the

information calculated in "Init_Probs" (ProbTable) to the output.

Destroy

source code file: relaxation_conversion.c

called by: Relaxation_compute ! 0
calls to: AVS

Description:

This routine deans up the intermediate data structures and frees memory.

0

UNCLASSIFIED 31

S • -- - • . wm,,~m -m .mm -tmm --• .,,--m. - m . ,im.. *f lBMl+m l.

ERL-O800-RR UNCLASSIFIED

7.3 Example Network and Output

lp• mam f

Figure 10: Example AVS Network for Relaxation Matching I 0

0

0

Figure 11 : Example Output for Relaxation Matching. Disparity

vectors are represented by lines overlaid onto original left input
image.

32 UNCLASSIFIED

• •- • •.', . ~ alm~ • a "" "]-i l ll l B 0u - ... * 0

UNCLASSIFIED ERL-0800-RR

7.4 Comments on Parameter Values and Performance

Each of the four initialisation modules has six user selectable parameters, while the

four relaxation modules each have two. A complete list and detailed explanation of

thesw parameters appears in Appendix B.

To get reasonable performance takes about 30 minutes for 512*512 images on a Sun

SPARCstation 10, In general, the longer the run time the better the perforurr-nce,

although recognisable match flow can be found in as little as five minutes. The "NN'

methods (both InitRelaxation and Relaxation) seem to give slightly quicker and

possibly more accurate results than the "focus" methods, but this depends somewhat on

the image characteristics.

Module performance is very much dependant on the ialues selected for the parameters

lnitRelaxation
In general it is not desirable to have more than about 1000 features although this can be

any number if the user is prepared to wait. The search-wiadow size should be JUST

large enough to account for the largest estimated flow: the bigger the window the

longer the execution time (with a roughly quartic relationship). A window size of 8

pixels (focus) in each direction is a good starting point. A window size of 20 features

(NN) is also a reasonable starting point. Obviously, some prior estimate of flow will J 0
reduce the time by allowing much smaller search windows to be used.

Relaxation
Again the same trade-off exists for window size vs run time (although the relationship

is now quadratic). Reasonable window sizes are a bit larger: 15 pixels (focus) or 25 S

features (NN). Ten iterations are usually plenty. These values will result in a run time

of 5-10 minutes.

A qualitative estimate of performance is as follows:

Time (min) Number of Matches % Accuracy (Self Consistency)

5 400 %60
30 600 %70
180 800 %75-85 ????

7.5 Future Directions

The next stage for these modules is to test them to determine optimal parameters for S
particular image types. Perhaps an algorithm could be developed to determine these

parameters during execution. A similar algorithm based on Kittler, Christmas and
Petrou's method [101 is currently being developed which promises to provide a more

rigorous method of determining the optimal values of the parameters involved.
0

UNCLASSIFIED 33

.. . ,

ERL-OOO-RR UNCLASSIFIED

8 HANNAH MATCHING MODULE

8.1 Description of the Hannah Matching Technique

This subsection outlines the system developed by Hannah [7] for the automatic
matching of points in stereo digital imagery. The system employs area-based
correlation as the matching mechanism, coupled with a variety of hierarchical search

techniques. The techniques incorporact iterative refinement and use a best-first
strategy in the matching process. Hierarchical back-matching is used to further check
reliability. Matching on image patches is performed by computing the cross-
correlation, normalised by mean and variance over windows surrounding the interest
points. The system employs a number of different matching algorithms in succession;
moving from global, relatively conservative search algorithms operating on a few
points that are highly likely to be matchable, to successively more constrained
searches (utilising information from preceding matches) on less promising points. Each
of the algorithms makes at least some use of image pyramids (hierarchies). Two
pyramids are used, one for each of the two original input images.

The algorithms were designed for use with images of highly textured natural terrain
(i.e. aerial photos) rather than cultural objects with "mostly linear or ambiguous
features". Nevertheless the system still rated very highly in the Image Matching
Test A for ISPRIS Working Group 111/4 [6], which used a wide variety of image
subjects, scales and quality. Hannah claims that for the most part, the results
appeared to be "reasonably" correct, even for large disparity ranges within small areas
of an image, and that the system is robust and is widely applicable.

The main stages of the complete matching system as described by Hannah are outlined
in subsections 8.1.1 through 8.1.5. Aspects of our implementation are detailed in
subsection 8.2. Note that at present, primarily due to lack of programming resources,
only the first two stages have been implemented. Hopefully further stages will be
implemented in the not too distant future. 0

8.1.1 Selection of Interest Points
As in Moravec feature extraction, an interest operator is first passed over one
of the input images, with local peaks in the output designated as "interesting S
points". Hannah proposed an operator that is a "product of the image
variance and the minimum of ratios of directed differences over windows of a
specified size", designed to penalise windows with low information and
windows where the information is contained in strongly linear edges. The
image is then subdivided into a grid of subimages, and the relative (interest 0
operator output) strengths of the best few interest points within each
subimage recorded. This is meant to provide a good spread of interest points
throughout the original image.

34 UNCLASSIFIED

*1 r.

UNCLASSIFIED ERL-0800-RR

8.1.2 Unconstrained Hierarchical Matching
image pyramids are first created for each of the two input images (hereafter
designated as image 1 and image 2). Each pyramid comprises a number of

successively lower resolution (smaller) images, with each image produced by

convolving the image below it with a Gaussian and subsampling by a factor of

two. The topmost image in the pyramid is approximately the size of the

correlation window.

The unconstrained hierarchical matching technique starts with a point in

image 1 (usually the most interesting point in each subimage) and traces it

back up through the image hierarchy (by scaling down the point's

coordinates) until it reaches the topmost level. A window is then taken about

the point and a search is made to find a correlation match with a similarly
windowed area on the corresponding image in the image 2 hierarchy. The

search commences with a 2D spiral search, followed by a hill-climbing

search for the maximum correlation between the image windows. The match
point is then moved down the image hierarchy and becomes the starting

point for a hill-climbing search at the next level. As the absolute size of the
correlation window does not change between levels, the relative size of the
window with respect to the image at each level in the hierarchy increases as

the hierarchy is traversed upwards. This means that matches are

effectively performed first over the entire image, then over increasingly
local areas, hence allowing overall image structure to set the context for a
match.

At any level in the hierarchy, matches with poor correlation (against an

absolute or auto correlation based threshold) are discarded. Each match
must also be confirmed by back matching: i.e. having found a match between
point p, in image I and P2 in image 2, the point P2 is subjected to the same

hierarchical matching algorithm to arrive at a match pl' in image 1. If p, S
and Pl' differ by more than one pixel the entire match is discarded.

8.1.3 Camera Modelling
The remaining search algorithms make use of epipolar constraints, thus
requiring some knowledge of camera geometry. If camera models are S
unavailable or unreliable the system can calculate a simplistic relative
camera model from the disparity information produced by the first matching

stage above. This is done by searching for five parameters that describe the

relative positions and orientations of two ideal pinhole cameras. The object
of the search is to minimise the error between P2 in image 2 and the epipolar •
line produced when p, in image I is projected into space, then into image 2

through the hypothesised pinhole cameras. The resulting equations and
their analytic derivatives are linearised, and an iterative process is carried

UNCLASSIFIED 35

qCa)
ERL-0800-RR UNCLASSIFIED

out so as to cull unreliable points until convergence to a consistent model is
obtained (otherwise failure is reported).

8.1.4 Epipolar Constrained Hierarchical Matching
This stage is very similar to unconstrained hierarchical matching, but
reduces the search for matching points to one dimension (within a specified
distance of the appropriate epipolar line). It is applied to any of the two
most interesting points for each subimage which were not already matched
during the unconstrained hierarchical matching stage.

8.1.5 Anchored Matching
Using reliable matches produced from earlier stages as "anchor points", and
assuming a continuous disparity field, a very local search is carried out for
each candidate match point using the epipolar constraint together with the
requirement that its disparity must lie within the disparity interval of
anchor points in the current and neighbouring subimages. Context for the
match may also be obtained by moving one or two levels up the image
hierarchy. All matches must pass the same tests as for the first two stages
outlined above, as well as an anchored-matching version of the back-
matching test.

8.2 Implementation in AVS * 0

8.2.1 General
At present only the first two stages (interest point selection and unconstrained
hierarchical matching) of the Hannah matching technique have been
implemented in AVS. It is proposed to add further stages in the future (see S
subsection 8.4) as programming support becomes available.

As outlined in section 2, the matching routine is implemented as a non-AVS-
specific "core" function that interfaces to the AVS environment via an AVS
module "wrapper". Refer to subsection 2.1 for details on general S
implementation aspects common to all the modules documented in this report.

The remainder of subsection 8.2 provides details on the implementation of
the Hannah routine. Comments on the source code and file system structure
(subsection 8.2.2) are followed by a brief description of the important data
structures (8.2.3) and finally a description of the most important functions and
their role within the function hierarchy (8.2.4). Note that this subsection
does not specifically deal with the AVS interface (AVS user documentation
for the module is provided in Appendix B). For illustrative purposes,
however, Figure 12 shows typical AVS network interconnections for the
module while Figure 13 shows an example user interface panel (easily
reconfigurable under the AVS layout editor).

36 UNCLASSIFIED

* 0

UNCLASSIFIED ERL-0800-RR

Figure 12: Example AVS Network Incorporating Hannah Matching Module

* i.

Figure 13 : Example Hannah User Interface with Output Display. User

selectable parameters for the algorithm are at left. Image Viewer shows

output as disparity vectors overlaid onto original left hand input image.

UNCLASSIFIED 37

(l I ..

ERL-0800-RR UNCLASSIFIED

8.22 Source Code and File Systems

Source files together with a Makefile are contained in directory
ii3:/gig3c/users/avslmodules.src on the server ui3 on the 1TD network. The
relevant files are :

Makefi le. hannah__avsmodule
hannah_avsmodule.c
hannah. h
hannah. c
createimage-hierarchies .c

create-intpoint-hierarchies. c
uhm. c
arrayalloc. c

The binary executable hannah_avs module is located in directory
/gig3c/users/avs/modules-bin.

8.2.3 Data Structures

8.2.3.1 AVS

The AVS field data structure is used to pass image and disparity
information into and out of the Hannah matching module. During
the development phase it has been convenient to store module
output as an AVS 2D field of floating point 4-vectors that contains

both the original images together with x and y disparity
information (see the descriptions in section 2 and Appendix A). The
relative sparseness of this disparity information means this is a

memory-inefficient representation, however in the authors'
opinion this disadvantage is outweighed by the convenience of
using relatively straightforward 2D array indexing and standard
AVS field access macros in implementing search techniques during
matching. Nevertheless the benefits and trade-offs involved in
using a structure such as an AVS 1D n-vector field for conveying
generic feature lists between modules warrants further

investigation.

8.2.3.2 Other
Within the non-AVS-specific code there are two specially created
C structures which merit some explanation. Both are defined in the

header file hannah. h.

38 UNCLASSIFIED

• -- ••.~ m mm m. imm m iliW~fl~ i liim i~~i . .. o, -- * -

UNCLASSIFIED ERL-OBO0-RR

struer hierlMAOe
int bier-level;

int xsIze, ysize;
float **ira;

struct hierlmage *parent, *child;

I hierlmage;
This is the template for the image pyramid structure. It is a doubly

linked list, with fields recording the image hierarchy level, image
dimensions, and a pointer to the image data.

struct hierlntPointi
int hierjievel;

int x, y;

int xmatchdisp, ymatchdisp;

float Corr;
int status;

struct hierlntPoint *prev, *next;
I hierintPoint;
This is also a doubly linked list, with each node containing
information on a particular interest point at a particular level in
the image hierarchy. Fields record the point's coordinates, the x

(vertical) and y (horizontal) displacements to the matched point

(if one exists), the correlation value of the matched point, and

match status (BACK__MATCHED or NOTMATCHED). Note that

the forward and backward links in the list are between the same
interest point at different levels in the image hierarchy. The

intpoint array (used in functions h a n n a h ,

create-intpointhierarchies and uhm) is a 3D array of these
linked lists. The array indices reference the subimage cell location
and the "order of merit" of the interest point within the subimage S
(e.g. intpoint[0[0[3] is the 4th highest ranking interest point in

the top left subimage) and the array fields contain associated
properties (e.g. intpointl0llj0[31.x and intpoint[0]IO}3].y give the x

and y positions of the interest point at the particular image
hierarchy level specified in intpoint[O [0][3].hier level). It is

linked to other levels via intpoint(O[OI[31.prev and
intpoint[Ol[O][3].next. In this way the location of each interest
point can be tracked up and down the image hierarchy.

8.2.4 Function Descriptions
This subsection describes the more important C functions making up the
module, together with additional comments on certain aspects of the
implementation. It is not intended to be exhaustive, but rather is presented

UNCLASSIFIED 39

* 0

ERL-0600-RR UNCLASSIFIED

as an aid in following the flow of processing and to clarify some areas that 4
may be confusing. Figure 14 depicts the hierarchy of function calls
throughout the routine.

ýVS Kernel

IIAVS mnit Hannah~matching Hannah-matching

validate.parm createimagehierarchies createjntpointhierarchs Iuhm

assign imag I "allo imae1itrest I ch 'oo ' I•nt sin itpin mtc back-match l
hirrh hirrcy Ioperator I points I hierarchy

1 0

Figure 14: Function Hierarchy for Hannah Matching

Hannah-matching-compute
source code file: hannah-avsmodule.c

called by: AVS kernel
calls to: hannah

Description:

Hannah-matching-compute is the computation function (refer subsection

2.1.5) for the Hannah matching module. It receives the user inputs from the
AVS interface, copies image information from AVS-specific data structures
into standa.d C arrays and structures, and passes them to hannah. In this
way, hannah-avsmodule acts as an AVS wrapper to the core hannah code. •
The left and right input images are converted to floating point and copied to
the output field's first and second vector elements, while the disparity
information calculated by subdirectory is copied from the disparityJ[J][] array
into the third and fourth vector elements.

40 UNCLASSIFIED

S. ;• -i mm ~ im llua li i i i 'I •1| " 0

UNCLASSIFIED ERL-OOO-RR

hannah

source code file: hannah.c

called by: hannah-avsmodule

calls to: validate-params

createimage-hierarchies

create-intpoint-hierarchies

uhm

Description:

This is the main function for the Hannah algorithm. It consists principally

of a series of function calls (described below), followed by a triple loop that

copies disparity information for all back-matched points from the

appropriate linked list fields into the disparity array. Indices are arranged

such that disparity[O][j][i] and disparityll][j][i] store respectively the y and x

direction disparities for the interest point at coordinates (ij).

validate-params

source code file: hannah.c

called by: hannah

calls to: P 0
Description:

This function performs simple checks on the values of some of the input

parameters. The macros MAXSUBX, MAXSUBY and MAXINTPERCELL are

defined in the header file hannah. h.

create-image.hierarchies

source code file: createimage-hierarchies.c

called by: hannah

calls to: allocimage-hierarchy
assign-image-hierarchy

Description:

This function takes the two input images, contained in arrays iml and ii2,

and creates a linked list implementing an image hierarchy. The function

allocimage-hierarchy allocates the memory for the image hierarchy

structure, while assign image-hierarchy taker the original input image and

successively smooths (3x3 Gaussian operator) and subsamples (by a factor of 2

each time) to create the hierarchy data. The subsampling process ends when

an image is obtained that is unable to be subsampled any further without 0
becoming smaller than the size of the (user-selectable) correlation window

size. Upon exit, assign-image-hierarchy sets the argument root to the

address of the hierlmage linked list node relating to the smallest image in

UNCLASSIFIED 41

C-

ERL-0800-R UNCLASSIFIED 4

the hierarchy, while the argument no-children stores the number of child

imageb in the hierarchy.

create-intpointhierarchies j*

source code file: createjntpoint-hierarcbies.c

called by: hannah

calls to: interest-operator

choose int-pts

assign-intpoint-hierarchy

Description:

This function first calculates an interest value for each image pixel in input

image 1. This is carried out by the function interest-operator which passes a

7 x 7 interest operator over the image. The form of the operator is not

explicitly provided in [7], but has been interpreted from its description to be

3 3

O(I(x,V)) = (I(x+i,y+j)-7)2 * min(r r', s, s") (8.1)

=-= + -y+ j)- I(x + i'y + j - I))

where r = ----- 2 and

1 1(l(x+i,y+j)- l(x+ i- l1,V+j))

-23

I I(J(x+i,y+j)- I(X+ i-I, v+j - 1))

and where summations are performed over the 7 x 7 window centred on the

pixel with coordinates (x,y). Again I(x,y) specifies the pixel value at the

location (x,y), while I is the mean pixel value in the window. The

operator does not need to be individually calculated in full a' each pixel due

to the redundancies that arise from overlapping as the operator window

moves around the image. Calculation time is reduced by the storing and

updating of a variety of running totals. 0

A more appropriate interpretation of the operator, however, may be

3 3

O(l(x,y)) = XX(I(x+i, Y+j)-)- * min(c, c',d, dd') (8.2)

42 UNCLASSIFIED

*...

UNCLASSIFIED ERL-0800-RR

3 3

I 1:11(X + j.y + j)- I(Xz•+ y + j -l_)1 2

where C if-3=i-2 and

S11(x +ajy+ j)-I(x + i- l,y + j)A2 Q)
i--2t,,-3

2 3

C,,Xl(x+ i,y+ j) - l(x + i + l,y +j -)12

d =~~ji

SI1I1(x + i,y + j) - I(x + i - 1,Y + j- - 12

This version makes use of the total energy of edges in each direction across all

pixels in the window, instead of the average edge strength across the

window.

Once the interest O(I(x,y)) values have been computed, the original input

images are divided up into a regular grid of subimages, with grid spacings

determined by the user-selectable variables nsubx and nsuby. Function

choose-int.pts chooses the best <int-percell> interest points in each

subimage in order of merit, and these are then entered by the function

assign -intpoin thierarchy into intpoint[l][][, an array of (hierarchically)

linked interest points.

uhm

source code file: uhm.c

called by: hannah

calls to: fwd-match

backmatch

Description:

This function performs unconstrained hierarchical matching on the selected

interest points. The function fwd.match is first called: this carries out a hill

climbing correlation search for the best matching point at each level in the

image 2 hierarchy, starting each time from the point matched at the

previous image hierarchy level. The hill climbing search proceeds by

moving to the highest (correlation) valued immediate neighbour of the

current image 2 search point, and ends when correlation is a local peak. The 0

correlation calculation and hill-climbing technique are actually carried out

in the function corr-match. Correlation is calculated via

N N
X •w,(l~m)w 2 (l,m)

R(w,,w,) - = 1 (8.3)
N NN 21M) N N W(,):

UNLwA Sm)IFIED 43(l'm)

UNCLASSIFIED 43 ''

S S

ERL-)O00-RR UNCLASSIFIED
40

where w, and w2 are N x N windows located in image I and image 2 0
respectively (the window size N is user selectable via winsize). The x and
y displacements for the match at each level in the image hierarchy are
recorded in intpointll][]I.xmatchdisp and intpointl[[lI[.ymatchdisp, and the
correlation is recorded in intpoint[][J[].corr. The back-match function then
carries out back matching for each matched point in image 2, again in an
hierarchical fashion with the corr-match function reused to carry out the
hill-climbing correlation matching at each level. Results are then compared
to the locations of the original interest points in image 1. If the absolute
values of both the x and y differences are not greater than one pixel the back
match is deemed to have confirmed the forward match and the statub
element of the intpoint is set to BACK-MATCHED (otherwise it is set to
NOT-MATCHED).

8.3 Comments on Parameter Values and Performance

There are five user selectable parameters associated with this module (a list and
detailed explanation of these appears in Appendix B). To obtain a reasonable set of
matches without an overly long wait, values of 8 for each of num x subimages and num y
subimages, 11 for window size, and 5 each for int points per cell and num uhm points are
a good starting point. These settings will require about 30 seconds run time and produce
around 200 matches for a 512*512 image.

Although rigorous testing of the algorithm on a range of image types and noise levels is
still to be carried out, on a qualitative level (based on a visual inspection of the two
input images and the consistency of the generated disparity flow field) performance is S
generally very good, with success rates of around 90 - 95% over a wide range of
parameter settings. Run time naturally increases with image size, the number of
matches that the user wishes to obtain (i.e. with a larger number of subimages and
points selected per subimage) and the size of the correlation window used in the
matching. S

Rough indicators of run times are as follows (512*512 image on Sun SPARCstation lu)

Time (min) Matches
0.5 200 5

0.7 300
2.5 1100

8.4 Future Developments 0

Only the first two stages (see subsections 8.1.1 and 8.1.2) of Hannah's complete
algorithm have been implemented to date. While these already provide quite

44 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

reasonable results (on a limited set of test images) at a qualitative level, implementing

the remaining three stages (camera modelling, epipolar unconstrained hierarchical

matching and anchored matching) should further improve performance. Nevertheless

quantitative testing is still required in order to properly assess performance over a

variety of realistic image types and depicted objects.

The camera modelling stage of the algorithm is a likely candidate for separation into

an independent module. An AVS motion estimation module based on a method

developed by Toscani and Faugeras 1141 has already been implemented (to be described

in a future report), and its use via some sort of feedback loop should be investigated. In

addition, the feature extraction and matching tasks can also be implemented as

separate modules. This allows the functions to be used on a greater variety of feature

detection and matching problems: for example, it is proposed to further investigate the

changes in performance when interest points are identified by three different modules

based on equations (8.1) and (8.2) and the Moravec interest operator (subsection 4.1). It

is unlikely, however, that the matching techniques outlined in subsections 8.1.2, 8.1.4

and 8.1.5 could be implemented as generic feature matching modules as they rely

strongly on the assumption that the underlying objects being matched are images (as

opposed to abstract feature sets).

9 CONCLUSIONS 0

This report has described a number of algorithms which have been implemented in a modular
and interchangeable way to perform the first two layers of a system for automatic shape

reconstruction from stereo imagery. These two layers are the feature extraction layer and the

feature matching layer. Within the feature extraction layer there are currently two

algorithms, namely "Moravec", a point based feature extractor and "FEX which delivers

edge based features. The feature matching layer currently has "Barnthom" which is a

window based relaxation scheme. Spanning both layers at the one time is the "Hannah"

algorithm which performs an hierarchical region based match.

Although designed to form part of a modular stereo photogrammetry system the algorithms

have been implemented in as generic a manner as possible so as to have wider applicability,

e.g. for use in general low level vision and image processing applications or in data fusion
systems. The matching algorithms in particular are not restricted to image data types, and S
are capable of being applied to any matching problem in which tokens have been identified

by locations in some higher dimensional vector space.

In the near future rigorous testing of these algorithms will be carried out with calibrated

data in order to evaluate their robustness in the presence of noise and their performance for 0

differing image characteristics. At the present stage, a qualitative assessment of suitable

choices of input parameter values (see appropriate sections in main body of report) and

comparative algorithm performance has been made for a limited set of test images. The

Barnthom relaxation algorithm tends to generate a large number of matches without

UNCLASSIFIED 45

ERL-O800-RR UNCLASSIFIED

necessarily having a high success rate (around 60% - 85%). Of the modules implementing the

Barnthom variants, the "NN" methods seem to give slightly quicker and possibly more

accurate results than the "focus" methods (in both the initialisation and relaxation stages),

but this cart depend somewhat on the image characteristics. Performance can be sigrificantly

",nproved by reverse matching (typically pruning the nmmber of matches by 25 - 40%).

Performance should also further improve if provided with a prior estimate of disparity flow

(say from Hannah) as an additional input. For raw image data however, Hannah seems more

reliable and more accurate than Barmthom (probably due largely to its in-built hierarchical

back matching step) with a success rate of around 90 - 95% throughout a wide range of

parameter settings. The module also takes significantly less time to execute than Barnthom

for a similar number of matches. The algorithm does, however, have the disadvantage

(within the context of this modular system) that feature extraction and matching components

cannot readily be separated and modularised, and that they implicitly assume that data

types are images.

The next stage of system development will see the introduction of an additional two layers.

The camera geometry/motion estimation layer will aim to provide the automatic

determination of camera geometry (or equivalently object motion) if this is not known a-

priori. The depth estimation layer will then use this information together with the

disparity information obtained from the matching layer to estimate depth or shape.

Preliminary algorithms for these layers are currently in the testing stage. Having completed

the modular framework for the full system it is then planned to further populate it with

algorithms available from the reearch literature, test each for performance on typical data

sets and to automate as much as possible the selection of appropriate input parameters and

combinations of algorithms for a given image type.

Longer term research may see the fusion of these stereo techniques with alternative shape S

inference methods, such as the "shape from shading" algorithms being developed by the

University of Adelaide component of the Visual Processing research program at the CSSIP.

10 ACKNOWLEDGMENTS

The authors would like to acknowledge the assistance and help of Dr. Janet Aisbett and Dr.

John Hildebrandt, who both supplied source code and advice in the implementation of these 0

modules, and Dr. Garry Newsam for advice and guidance in the preparation of this report.

46 UNCLASSIFIED

UNCLASSIFIED EHL-O•80-RR

3)

REFERENCES

1. Advanced Visual Systems AVS User's Guide. Advanced Visual Systems Inc.,

Waltham, MA., Part Number 320-0011-02 Rev B, 1992.

2. Baker, M.S. and A Computer Package for Image Registration Using

Newsam, G.N. Smoothing Splines. Research Report ERL-084-RR,

Electronics Research Laboratory, DSTO, Canberra,

Australia, 1993.

3. Barnard, S.T. and 'Disparity Analysis of Images", IEEE Transactions on

Thompson, W.B. Pattern Analysis and Machine Intelligence 1980, 2 (4),

333-340.

4. Canny, J. "A Computational Approach to Edge Detection", IEEE

Transactions on Pattern Analysis and Machine

Intelligence 1986, 8 (6), 679-698.

5. Etemadi, A. "Robust Segmentation of Edge Data", code obtained by
ftp from Percentual Groupings archive, University of P 0
Surrey, U.K., email:atae@spva.ph.ic.ac.uk. $

6. Gulch, E. "Results of Test on Image Matching of ISPRS WG 111/4",

International Archives of Photogrammetry and Remote

Sensing, 1988, 27-111, 254-271.

7. Hannah, M.J. "A System for Digital Stereo Image Matching",

Photogrammetric Engineering and Remote Sensing 1989,

55(12), 1765-1770.

8. Hildebrandt, J.H. Edge Based Methods .for Image Matching. Divisional

Paper ITD-94-08, Information Technology Division,

Electronics Research Laboratory, DSTO, Canberra,

Australia, 1994.

9. Kernighan, B. and The C Programming Languae. Prentice-Hall,

Ritchie, D. Englewood Cliffs, NJ, 197ý

10. Kittler, J., Christmas, W.J., "Probabilistic Relaxation For Matching Problems In 0
and Petrou, M. Computer Vision", in: Proceedings of the Fourth

International Conference on Computer Vision. Berlin,

Germany, IEEE Computer Society Press, 1993; pp 666-

673.

UNCLASSIFIED 47

* .

ERL-0800-RR UNCLASSIFIED

11. Moravec, H.P. "Towards Automatic Visual Obstacle Avoidance", in:
Proceedings of the Fifth International Joint Conference
on Artificial Intelligence. Cambridge, MA, IJCAI, 1977; (

p 584.

12. Rasure, J.R., and "An Open Environment for Image Processing Software
Young, Mi Development", in: Image Processing and Interchange:

Implementation and Systems. Ronald B. Arps, William
K. Pratt (Eds), Proc. SPIE 1659, 1992; pp 300-310.

13. Russ, J.C. The Image Processing Handbook. CRC Press, Florida,
1992; p 125.

13. Toscani, G. and "Structure and Motion from Two Noisy Perspective
Faugeras, 0. Views", in: Proceedings of the 1987 IEEE International

Conference on Robotics and Automation. Raleigh, North

Carolina, IEEE Computer Society Press, 1987; Vol. 1,
pp 221-227.

4 @

48 UNCLASSIFIED ,

"=, * • , • m~ N wmmmm~mmm mll llllm lllll I • N

i7

UNCLASSIFIED ERL-0800-RR

ILf
APPENDIX A: SUMMARY OF DATA REPRESENTATIONS

(4)P
This appendix contains details of the AVS data formats used for representing the input
images and the feature and flow fields.

Input Data Format

AVSfield(2D, scalar, uniform, byte)

This is a single band of an image, either an 8 bit grey image or one band of a 32 bit 4-band
image. Its size (width and height) is specified within the data structure describing the
field.

Feature Field Data Format

AVSfield(2D, uniform, float)

This is a 2D data structure where the number of elements at each point is undefined. Again,
the size (width, height, vectorlength) is specified within the data structure describing the
field. By convention the first band (band 0) is a copy of the original grey level image
converted to floating point values. The remaining bands hold the feature vectors as
calculated at a point. Non-features have a value of zero for the feature elements. For
instance Moravec places the Moravec interest operator in the second band (Band 1). FEX
places three values in Bands 1, 2 and 3. There is no convention about what values are
acceptable as features at this stage.

Flow Field Data Format

AVSfield(2D,4-vector,uniform,float)

This is a 2D data structure of floating point values where each element contains exactly four
items. The first band (Band 0) contains the left or primary image. The second band (Band 1)
contains the right or secondary image. The remaining two bands contain respectively the "y"
disparity and the "x" disparity. These values can be either:

a) The actual displacement (in y or x direction according to band) between
matching features, stored as a floating point real.

or b) NotMatched (defined as a large constant in "relaxation.h"). •
or c) Ignored (defined as a large constant in "relaxation.h").

NotMatched means there is a feature point here, but no match was found. Ignored means that
there was not a feature point here.

0

UNCLASSIFIED 49

I- : . .•, . . = ., . , - = =m -, m ma m m mml ,=. . ..

ERL-O80O-RR UNCLASSIFIED

APPENDIX B: ON-LINE USER DOCUMENTATION

This appendix consists of direct copies of the on-line user documentation (accessible via the 14

AVS system) for the modules described in this report. A knowledge of the AVS network

environment is assumed.

AVS ON-LINE HELP PAGE FOR MORAVEC FEATURE EXTRACTION

AVS Modules Moravec (6)

NAME
Moravec - performs Moravec Interest Operator point feature extraction

SYNOPSIS I
Name Moravec

Availability ShapeInference module library

Type filter

Inputs field 2D 2-space 1-vector uniform byte (REQUIRED)
field 2D 2-space 1-vector uniform byte (OPTIONAL)

Outputs field 2D 2-vector uniform float
field 2D 2-vector uniform float

byte

Parameters Name Type Default Min Max 0

Maxima Only boolean 1 0 1
FPs (fraction) real 0.001 0 100

DESCRIPTION 0

This module implements a point based feature extraction algorithm

based upon the Moravec Interest Operator. This operator defines

an interest value for each point being the minimum variance as

measured along the four major directions of a five by five local

neighbourhood centred on the pixel of interest. For our purposes
the variance is defined as the sum of the squares of the difference

between each point on the diagonal and the central point of interest.
Only a number of points specified by the parameters "Maxima Only" and

50 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

"FPs (fraction)" are passed to the output. with the remaining points
being annulled. The choice of which points to include is determined
by iteratively adjusting some threshold until the required number ot
interest points remain. ()

INPUTS
Data Field (required; field 2D 2-space 1-vector uniform byte)
Data Field (optional; field 2D 2-space 1-vector uniform byte)

The inputs are a pair of "single band" grey scale images. It is
assumed that the images exhibit similar characteristics, i.e. they
have the same image dimensions. Otherwise, these images are
processed in isolation.

PARAMETERS

Maxima Only
This is a switch which determines whether points of local
maxima of Moravec Interest are included as possible features.

FPs (fraction)
This value determines the approximate number of feature
points required at the output as a percentage fraction of
the number of pixels in the original image.

OUTPUTS
Data Field (required; field 2D 2-vector uniform float)
Data Field (optional; field 2D 2-vector uniform float)

These fields contains copies of the left and right input images
in the first "band" (i.e. vector element 0) respectively, together
with Moravec Interest point information in the last "band"
(i.e. vector element 1).

Byte
This indicates the type of feature being output.

EXAMPLE
This example shows the left and right images read in by means of two 0
"read image" modules and converted to "single band" grey images (for the
purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar
field (i.e. single band) - other input file formats may be read with
alternate data input modules (e.g. "ip read vff") and may not require this 0
step).
The input fields are passed to the "Moravec" module which in turn
outputs two 2 band fields containing copies of the input images
(converted to type float) and the Moravec Interest features.

UNCLASSIFIED 51..('

S. .. . "-•-• -- .. •-- wan l m • 0 =H N 4B I / H i | . . . I . . •|* 0

ERL-OW0-RR UNCLASSIFIED

The extract scalar modules extract each of the bands from each of the

images and pass them as grey level images into the image viewer. They

could just as easily have been passed as the input images to a matching

algorithm such as "barnthom" (written by James Kershaw as part of the •,)

ShapeInference library).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

MORAVEC
SI I

II I

I I I I

EXRATRCLA IIEC Af CLA

I I I I

IMAGE VIEWER IMAGE VIEWER I I S
I I

IMAGE VIEWER IMAGE VIEWER

RELATED MODULES

Barnthom, FEX.

SEE ALSO

Release 5 AVS Moravec(6)

52 UNCLASSIFIED

*ohm

UNCLASSIFIED ERL-0800-RR

AVS ON-LINE HELP PAGE FOR FEX FEATURE EXTRACTION

AVS Modules Fex (6)

NAME

Fex - performs an edge based feature extraction

SYNOPSIS

Name Fex

Availability ShapeInference module library

Type filter

Inputs field 2D 2-space 1-vector uniform byte (REQUIRED)

field 2D 2-space 1-vector uniform byte (REQUIRED)

Outputs field 2D 5-vector uniform float

byte

P 0
Parameters Name Type Default Min Max

Threshold integer 50 1 255

Min Length integer 5 1 150

DESCRIPTION

This module implements a feature extraction algorithm based on one

developed by A. Etemadi. This operator chains together connected

edge pixels into strings and then segments these strings into straight

line segments. These segments are parameterised by calculating a

length, angle and variance of edge strength (both across and along

the edge segment). The "threshold" is an input threshold which limits

the number of pixels considered : only pixels with an edge strength

greater than this value are accepted. The "Min Length" is the minimum
number of pixels which must be linked in a chain before the chain is

considered. All of the points of a straight edge segment are given

the same values, and these are written into the second and successive

"bands" of the output field. The original image (first input) is

copied to the first band of the output. The second input is an edge

filtered image (as in a Sobel or Canny edge filtered output).

UNCLASSIFIED 53

C

ERL.OWOO-RR UNCLASSIFIED

INPUTS
Data Field (required; field 2D 2-space 1-vector uniform byte)
Data Field (required; field 2D 2-space I-vector uniform byte)

The inputs are a pair of "single band" grey scale images. The
first input is assumed to be the original grey level image.
The second input is assumed to be the edge filtered version
of the original image (note that this edge filtered version
should have thinned edges).

PARAMETERS

Threshold
This value determines the minimum edge strength of the edge
filtered image that is required of a pixel before it is
considered to be an edge point.

Min Length
This value determines the minimum chain length (in pixels)

before that chain is considered a valid edge.

OUTPUTS
Data Field (required; field 2D 5-vector uniform float) P 0

This field contains a copy of the original input image in the
first "band" (i.e. vector element 0), while the remaining bands
(i.e. vector elements 1..4) contain the parameters of the edge

segment that pixel belongs to.

Byte
This value indicates the type of feature which has been
extracted.

EXAMPLE
This example shows the original image being read in by the "read image"
module and then one of the bands being extracted to give a grey level
image (this extraction is necessary due to the four band standard AVS

image format). The image is then passed to the first input of the "Fex" S
module and the "Sobel" edge filtering module. Fex in turn takes the
original grey level image and the edge filtered image before passing
the output to the "Image Viewer" which is able to take multiple dimension
floating point images.
The output could also have been connecteti to one of the inputs of a
feature matching algorithm such as "Barnthom" which is also available
in the ShapeInference library.

54 UNCLASSIFIED

* 0

UNCLASSIFIED ERL-O800-RR

READ IMAGE

EXTRACT SCALAR (

IL

Sobel Edge Filter

I I

Fex

Image Viewer

p 0

RELATED MODULES

Barnthum, Moravec.

SEE ALSO

Release 5 AVS Fex(6)

U

S

0

UNCLASSIFIED 55 '

C
F

ERL-OSOO-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR INIT-RELAX(FOCUSCORR)

AVS Modules nitRelax(focus-corr) (6)

NAME
LnitRelax(focus_corr) - performs relaxation initialisation for various feature sets.

SYNOPSIS
Name InitRelax(focus-corr)

Availability ShapeInference module library

Type Filter

Inputs field 2D uniform float (REQUIRED)
field 2D uniform float (REQUIRED)
field 2D uniform 4-vector float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

field 2D 3-vector float P S

Parameters Name Type Default Min Max

Centre.x float 0.000 unbound unbound

Centre-y float 0.000 unbound urbound

ClockWiseRot float 0.000 0.000 360.0

Transx float 0.000 unbound unboun

Trans-y float 0.000 unbound unbou• d

SearchWindow int 10 1 unbound

DESCRIPTION
This module implements an initialisation for a relaxation matching scheme.

It takes two feature fields (of the same type) and identifies probable
matches between the two feature sets, with an initial probability of match.

The possible matches are determined as any match within <SearchWindow>
pixels of the centre of the search area. The centre of the search area is determined

in the first instance by the location of the primary feature (in the first input 0
feature field) added to the local estimate of flow for the primary feature

(as indicated by the optional flow field input). If there is no optional

input, or if the values in the input flow field indicate that no local

estimate of flow has been determined, the centre of the search area is

56 UNCLASSIFIED

•- ,.-,--mra , a,•ll IIIC lIm ilIIIII • m -. 1*

• I ii

UNCLASSIFIED ERL-OWOO-RR

determined by the conformal transform described by the first five parameters
of the location of the primary feature.
The associated initial probability of each possible match is determined by
finding the discrete co-variance between a five by five local mask centred
on the location of each of the two potentially matched feature points.
The first output is a flow field which holds copies of the two initial
images (in the first band of the incoming feature images) in its first
two bands. The second output is an array which holds lists of features,
with associated matches and probabilities. The output is interpretable
by the relaxation matching algorithms.

INPUTS
Data Field (required; field 2D uniform float)
Data Field (required; field 2D uniform float)

These inputs are a pair of similar feature fields, where the first
"band" holds the original image and the remaining bands hold the
feature vectors (one element per band at the feature posithcn).

The feature fields have to have the same depth (or length of vector).

Data Field (optional; field 2D 4-vector uniform float)
This input is an optional field which specifies local flow information
where this information is available.

PARAMETERS

Centre_x
This is the centre of the two dimensional rotation (horizontal)

Centre-y
This is the vertical centre of the two dimensional global flow
rotation estimate.

ClockWiseRot
This is the magnitude of the global rotation estimate.

Trans-x
This is the global horizontal translation estimate.

Trans-y
This is the global vertical translation estimate.

Search-Window
This is the magnitude of the search area, specified as the number 0
pixels from the centre ui the search area.

UNCLASSIFIED 57
(

0/

EFIL-OSOO-RR UNCLASSIFIED

OUTPUTS
Data Field (required; field 2D 4-vector uniform float)

These fields contains copies of the left and right input images
in the first "bands" (i.e. vector elements 0 and 1 respectively).
Bands 2 and 3 are empty.

Data Field (required; field 2D float)
This field holds the lists of matches. The first index indicates
the primary feature, the second index indicates the possible match
number and the position in the vector element contains information
such as x displacement, y displacement and initial probability.

EXAMPLE
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the
purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar
field (i.e. single band) - other input file formats may be read with
alternate data input modules (e.g. "ip read vff") and may not require this
step).
The input fields are passed to the "Moravec" module (written by James Kershaw
for the Shape Inference library) which in turn outputs two 2 band fields P 0
containing copies of the input images (converted to type float) and the
Moravec Interest features.
These Moravec feature fields are then passed to the input of the
"InitRelax(focus corr)" module which carries out the initialisation and
calculation of possible matches, before passing a flow field and probability
table to a relaxation matching algorithm which in turn passes a flow field
to the "draw lines" module (written by Garry Hamlyn for Shape Inference),
which enables the Image Viewer to display the flow vectors on the original
image (supplied independently).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

--.-.--------.. +......+
I I I
I I I

MORAVEC I

58 UNCLASSIFIED

S"" " • • • " w n i• i i I[• 0

1
UNCLASSIFIED ERL-08O-RR

INITRELAX(FOCUS.CORR)
0

Relaxation Matching

I

DRAW LINES

I

IMAGE VIEWER

RELATED MODULES

MORAVEC, FEXo DRAW LINES, HANNAH, RELAXATION P S

SEE ALSO

Release 5 AVS Init_Relax(Focus-corr)(6)

UNCLASSIFIED 59

• , l (i I l i li I l l J i l ° - I| - -l

ERL-O6O0-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR INITRELAX(FOCUSGEN)

AVS Modules lnitRelax(focus-gen) (6)

NAME

lnit-Relax(focus-gen) - performs relaxation initialisation for various feature sets.

SYNOPSIS

Name Init_Relax(focus-gen)

Availability Shapelnference module library

Type Filter

Inputs field 2D uniform float (REQUIRED)

field 2D uniform float (REQUIRED)

field 2D uniform 4-vector float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

field 2D 3-vector float

, .
Parameters Name Type Default Min Ma.\

Centre-x float 0.000 unbound unbound

Centre-y float 0.000 unbound unbou.n d

ClockWiseRot float 0.000 0.000 360.0

Transx float 0.000 unbound unbound

Trans-y float 0.000 unbound unbound

Search-Window int 10 1 unbound

DESCRIPTION

This module implements an initialisation for a relaxation matching scheme.

It takes two feature fields (of the same type) and identifies probable

matches between the two feature sets, with an initial probability of match.

The possible matches are determined as any match within <SearchWindow>

pixels of the centre of the search area. The centre of the search area is determined

in the first instance by the location of the primary feature (in the first input

feature field) added to the local estimate of flow for the primary feature S

(as indicated by the optional flow field input). If there is no optional

input, or if the values in the input flow field indicate that no local

estimate of flow has been determined, the centre of the search area is

determined by the conformal transform described by the first five parameters

60 UNCLASSIFIED

- m msis.

UNCLASSIFIED ER'.-O800-RR

of the location of the primary feature.
The associated initial probability of each possible match is determined by
finding the Eucidean distance between each of the two potentially matched
feat --e points.
The first output is a flow field which holds copies of the two initial
images (in the first band of the incoming feature images) in its first
two bands. The second output is an array which holds lists of features,
with associated matches and probabilities. The output is interpretable
by the relaxation matching algorithms.

INPUTS

Data Field (required; field 2D uniform float)
Data Field (required; field 2D uniform float)

These inputs are a pair of similar feature fields, where the first
"band" holds the original image and the remaining bands hold the
feature vectors (one element per band at the feature position).

The feature fields have to have the same depth (or length of vector).

Data Field (optional; field 2D 4-vector uniform float)
This input is an optional field which specifies local flow information
where this information is available. 0

PARAMETERS

Centre-x 0
This is the centre of the two dimensional rotation (horizontal)

Centre-y
This is the vertical centre of the two dimensional global flow
rotation estimate. 0

ClockWiseRot
This is the magnitude of the global rotation estimate.

Trans_x
This is the global horizontal translation estimate.

Trans -y
This is the global vertical translation estimate.

Searcn Window
This is the magnitude of the search area, specified as the number
pixels from the centre of the search area.

.

UNCLASSIFIED 61

ERL-OOO-RR UNCLASSIFIED

OUTPUTS
Data Field (required; field 2D 4-vector uniform float)

These fields contains copies of the left and right input images

in the first "bands" (i.e. vector elements 0 and I respectively).
Bands 2 and 3 are empty.

Data Field (required; field 2D float)

"This field holds the lists of matches. The first index indicates
the primary feature, the second index indicates the possible match

number and tie position in the vector element contains information
such as x displacement, y displacement and initial probabilitv.

EXAMPLE
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the

purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar
field (i.e. single band) - other input file formats may be read with

alternate data input modules (e.g. "ip read vff') and may not require this
step).
The input fields are passed to the "Moravec" module (written by James Kershaw

for the Shape Inference library) which in turn outputs two 2 band fields

containing copies of the input images (converted to type float) and the
Moravec Interest features.
These Moravec feature fields are then passed to the input of the
"InitRelax(focus-gen)" module which carries out the initialisation and

calculation of possible matches, before passing a flow field and probability

table to a relaxation matching algorithm which in turn passes a flow field
to the "draw lines" module (written by Garry Hamlyn for Shape Inference),
which enables the Image Viewer to display the flow vectors on the original

image (supplied independently). S

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

+------------------+ +- ------ +

I I I
I I

MORAVEC I

6 I U IF

62 UNCLASSIFIED

0 ®w

UNCLASSIFIED ERL-0800-RR t

, I
IN1T-RELAX(FOCUSGEN) I

Relaxation Matching I
I I

I

DRAW LINES I

If

IMAGE VIEWER

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, RELAXATION

SEE ALSO

Release 5 AVS InitRelax(FocusGen)(6)

UNCLASSIFIED 63

(0 *

ERL-OSOO-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR INITRELAX(NNCORR)

AVS Modules InitRelax(NN corr) (6)

NAME
InitRelax(NN-corr) - performs relaxation initialisation for various feature sets.

InitRelax(NN-corr)

Availability ShapeInference module library

Type Filter

Inputs field 2D uniform float (REQUIRED)
field 2D uniform float (REQUIRED)
field 2D uniform 4-vector float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float
field 2D 3-vector float

p.•
Parameters Name Type Default Min Max

Centrex float 0.000 unbound unbound
Centre-y float 0.000 unbound unbound
ClockWiseRot float 0.000 0.000 360.0
Trans-x float 0.000 unbound unbound
Trans-y float 0.000 unbound unbound
Search-Window int 10 1 unbound

DESCRIPTION
This module implements an initialisation for a relaxation matching scheme.
It takes two feature fields (of the same type) and identifies probable
matches between the two feature sets, with an initial probability of match.
The possible matches are determined as the closest <SearchWindow> features
to the search area. The centre of the search area is determined in the
first instance by the location of the primary feature (in the first input
feature field) added to the local estimate of flow for the primary feature •
(as indicated by the optional flow field input). If there is no optional
input, or if the values in the input flow field indicate that no local
estimate of flow has been determined, the centre of the search area is
determined by the conformal transform described by the first five parameters

64 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR (.)

of the location of the primary feature.

The associated initial probability of each possible match is determined by

finding the discrete co-variance between a five by five local mask centred

on the location of each of the two potentially matched feature points.

The first output is a flow field which holds copies of the two initial

images (in the first band of the incoming feature images) in its first

two bands. The second output is an array which holds lists of features,

with associated matches and probabilities. The output is interpretable

by the relaxation matching algorithms.

INPUTS

Data Field (required; field 2D uniform float)

Data Field (required; field 2D uniform float)

These inputs are a pair of similar feature fields, where the first

"band" holds the original image and the remaining bands hold the

feature vectors (one element per band at the feature position).

The feature fields have to have the same depth (or length of vector).

Data Field (optional; field 2D 4-vector uniform float)

This input is an optional field which specifies local flow information

where this information is available.

PARAMETERS

Centre-x

This is the centre of the two dimensional rotation (horizontal)

Centre-y

This is the vertical centre of the two dimensional global flow

rotation estimate.

ClockWiseRot

This is the magnitude of the global rotation estimate.

Trans_x

This is the global horizontal translation estimate.

Trans.y

This is the global vertical translation estimate.

SearchWindow

This is the magnitude of the search area, specified as the number

of matches to consider (in order of closeness)

UNCLASSIFIED 65

(• - • • • ml a m i Imm m m • lm Iak Ia l~-i• rlmn l

ERL-0800-RR UNCLASSIFIED

OUTPUTS
Data Field (required; field 2D 4-vector uniform float)

These fields contaiit copies of the left and right input images
in the first "bands" (i.e. vector elements 0 and 1 respectively).

Bands 2 and 3 are empty.

Data Field (required, field 2D float)
This field holds the lists of matches. The first index indicates

the primary feature, the second index indicates the possible match
number and the position in the vector element contains information

such as x displacement, y displacement and initial probability.

EXAMPLE
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the
purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar

field (i.e. single band) - other input file formats may be read with
alternate data input modules (e.g. "ip read vff') and may not require this
step).

The input fields are passed to the "Moravec" module (written by James Kershaw

for the Shape Inference library) which in turn outputs two 2 band fields P 0
containing copies of the input images (converted to type float) and the

Moravec Interest features.
These Moravec feature fields are then passed to the input of the
"InitRelax(NN-corr)" module which carries out the initialisation and
calculation of possible matches, before passing a flow field and probability

table to a relaxation matching algorithm which in turn passes a flow field
to the "draw lines" module (written by Garry Hamlyn for Shape Inference),
which enables the Image Viewer to display the flow vectors on the original

image (supplied independently).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

+-----------------+ +-------

I I

MORAVEC I
6 I I

66 UNCLASSIFIED

* 0

UNCLASSIFIED ERL-0800-RR ()

INITRELAX(NNCORR) I
I II

Relaxation Matching f

I

DRAW LINES I

+
I I

IMAGE VIEWER

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, RELAXATION

SEE ALSO

Release 5 AVS Init-Relax(NN-corr)(6)

UNCLASSIFIED 67

(..., • ,i ~ l il d l

ERL-0800-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR INIT._RELAX(NNGEN)

AVS Modules Init_Relax(NN gen) (6)

NAME

Init-Relax(NN.gen) - performs relaxation initialisation for various feature sets.

SYNOPSIS

Name lnitRelax(NN-gen)

Availability ShapeInference module library

Type Filter

Inputs field 2D uniform float (REQUIRED)

field 2D uniform float (REQUIRED)

field 2D uniform 4-vector float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

field 2D 3-vector float

P 0
Parameters Name Ty Default Mm Max

Centrex float 0.000 unbound unbound

Centre-y float 0.000 unbound unbon d

ClockWiseRot float 0.000 0.000 360.0
Transx float 0.000 unbouind unbound

Trans-y float 0.000 unbound unbound

SearchWindow int 10 1 unboxun

DE2SRIPTION

1 his module implements an initialisation for a relaxation matching scheme.

It takes two feature fields (of the same type) and identifies probable

matches between the two feature sets, with an initial probability of match.

The possible matches are determined as the closest <SearchWindow> features

to the search arpa. The centre of the search area is determined in the

first instance by the location of the primary feature (in the first input

feature field) added to the local estimate of flow for the primary feature

(as indicated by the optional flow field input). If there is no optional

iinput, or if the values in the input flow field indicate that no local

estimate of flow has been determined, the centre of the search area is

determined by the conformal transform described by the first five parameters

68 UNCLASSIFIED

m, .i .i -- .•...,.. , =. .i i in i li l i •i 0 0 I

I

UNCLASSIFIED ERL-0800-RR (j

of the location of the primary feature.
The associated initial probability of each possible match is determined by
finding the Euclidean distance between each of the two potentially matched
feature points.
The first output is a flow field which holds copies of the two initial
images (in the first band of the incoming feature images) in its first
two bands. The second output is an array which holds lists of features,
with associated matches and probabilities. The output is interpretable
by the relaxation matching algorithms.

INPUTS
Data Field (required; field 2D uniform float)
Data Field (required; field 2D uniform float)

These inputs are a pair of similar feature fields, where the first
"band" holds the original image and the remaining bands hold the
feature vectors (one element per band at the feature position).
The feature fields have to have the same depth (or length of vector).

Data Field (optional; field 2D 4-vector uniform float)
This input is an optional field which specifies local flow information
where this information is available. * *

PARAMETERS

Centre_x

This is the centre of the two dimensional rotation (horizontal)

Centre-y
This is the vertical centre of the two dimensional global flow
rotation estimate. S

ClockWiseRot
This is the magnitude of the global rotation estimate.

Trans_x
This is the global horizontal translation estimate.

Trans-y 5
This is the global vertical translation estimate.

SearchWindow
This is the magnitude of the search area, specified as the number
of matches to consider (in order of closeness) S

UNCLASSIFIED 69

0 S

ERL-0800-RR UNCLASSIFIED

OUTPUTS

Data Field (required; field 2D 4-vector uniform float)

These fields contains copies of the left and right input images

in the first "bands" (i.e. vector elements 0 and 1 respectively).

Bands 2 and 3 are empty.

Data Field (required; field 2D float)

This field holds the lists of matches. The first index indicates

the primary feature, the second index indicates the possible match

number and the position in the vector element contains information

such as x displacement, y displacement and initial probability.

EXAMPLE

This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the

purposes of this example it is assumed here that images are in AVS

image format (4 band) hence it is necessary to convert each to a scalar

field (i.e. single band) - other input file formats may be read with

alternate data input modules (e.g. "ip read vff') and may not require this

step).

The input fields are passed to the "Moravec" module (written by James Kershaw

for the Shape Inference library) which in turn outputs two 2 band fields

containing copies of the input images (converted to type float) and the

Moravec Interest features.

These Moravec feature fields are then passed to the input of the

"InitRelax(NN-gen)" module which carries out the initialisation and

calculation of possible matches, before passing a flow field and probability

table to a relaxation matching algorithm which L,. turn passes a flow field

to the "draw liner" moc~ule (written by Garry Hamlyn for Shape Inference),

which enables the Image Viewer to display the flow vectors on the original

image (supplied independently).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

+ ---------------- + ------
I I

I I I

MORAVEC I

I I L I

70 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

INIrrRELAX(NN.GEN)

Relaxation Matching I
I

II

DRAW LINES I

I

I

IMAGE VIEWER

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, RELAXATION 0

SEE ALSO

Release 5 AVS InitRelax(NNgen)(6)

U I

UNCLASSIFIED 71 ',

.. .0.

ERL-O00-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR RELAXATION

AVS Modules Relaxation (6)

NAME

Relaxation - performs relaxation matching for a given initialised table.

SYNOPSIS

Name Relaxation

Availability Shapelnference module library

Type filter

Inputs field 2D 4-vector uniform float (REQUIRED)

field 2D 3-vector float (REQUIRED)

field 2D uniform float (OPTIONAL) p

Outputs field 2D 2-space 4-vector uniform float

Parameters Name Type Default Min Max * 0

Neighbourhood integer 6 1 100

Iterations integer 5 0 20

DESCRIPTION

This module implements a relaxation matching scheme capable of taking

an initialised probability table (field 2D 3-vector) which has primary

features along the first dimension, potential matches along the second

dimension and values of displacement and initial estimate of match

probability contained in the vector element, (*' The array is more specific

than that and is described in the source code comments **), and determining

a sparse flow field, with an estimate of flow calculated for each of the

primary features.

The result is a single flow field which contains copies of the left and

right original images (in vector positions 0,1) and a set of displacements

(vertical and horizontal) between the matched feature pairs (vector positions

2,3 respectively).

The relaxation scheme is based on neighbourhood support, where the neighbourhood

is calculated as any primary feature within <Neighbourhood> pixels of the

primary feature (not including the primary feature in question). The iterative

relaxation algorithm is performed <Iterations> times.

72 UNCLASSIFIED

"' 0

UNCLASSIFIED ERL-0800-RR (j

INPUTS

Data Field (required; field 2D 4-vector uniform float)

This input holds the two original images in its first two bands.

The remaining two bands are empty.

Data Field (required; field 2D 3-vector float)

This input holds the initial probability estimates with other

relevant information, as follows.

Fieldli][O holds (Xlocation,Ylocation,Number of Matches)

of the primary feature T

Fieldli[l1] holds 0,0,Prob(NoMatch)) for feature T i

Field[i][j] holds IdX,dY,Prob) for the 'jth' match of feature

T, where (dX,dYI are displacements from feature T,

and IProb) is the probability (estimate) that the jth'

match feature should be matched with the 'ith' feature.

Data Field (optional; field 2D uniform float)

This input is an optional feature field which may be used to

modify the neighbourhood search area. It is meaningless at the

moment (i.e. it is ignored).

PARAMETERS

Neighbourhood

This value determines the size of the neighbourhood (in pixels

from the primary feature).

Iterations

This determines the number of times the relaxation calculation

is performed.

OUTPUTS
Data Field (required; field 2D 4-vector uniform float)

These fields contains copies of the left and right input images

in the first "bands" (i.e. vector elements 0 and I respectively)

together with vertical and horizontal disparity information

in the last two "bands" (i.e. vector elements 2 and 3 respectively). 0

UNCLASSIFIED 73

I L

ERL-O600-RR UNCLASSIFIED

EXAMPLE
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the
purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar
field (i.e. single band) - other input file formats may be read with

alternate data input modules (e.g. "ip read vff') and may not require this
step).
The input fields are passed to the "Moravec" module (written by James Kershaw
for the Shape Inference library) which in turn outputs two 2 band fields
containing copies of the input images (converted to type float) and the
Moravec Interest features,
These Moravec feature fields are then passed to an "InitRelax...." module
which sets up the probability table for relaxation. This table is then
input to "Relaxation" which carries out the flow calculation before passing

a flow field to the "draw lines" module (written by Garry Hamnyn for Shape
Inference), which enables the Image Viewer to display the flow vectors on

the original image (supplied independently).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR

I I

I I

MORAVEC I

I I

INITRELAX(...... I
f fI

S I I

RELAXATION I

II

DRAW LINES I
I I

I I

IMAGE VIEWER

74 UNCLASSIFIED

*

UNCLASSIFI) ERL-0800-RR

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, INIT-RELAX(...)

SEE ALSO

Release 5 AVS Relaxation (6)

UNCLASSIFIED 75 '

OI

ERL-0800-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR RELAXATIONNN

AVS Modules RelaxationNN (6)

NAME

RelaxationNN - performs relaxation matching for a given initialised table.

SYNOPSIS

Name RelaxationNN

Availability ShapeInference module library

Type filter

Inputs field 2D 4-vector uniform float (REQUIRED)

field 2D 3-vector float (REQUIRED)

field 2D uniform float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

Parameters Name Type Default Mm Max 0

Neighbourhood integer 6 1 100
Iterations integer 5 0 20

DESCRIPTION
This module implements a relaxation matching scheme capable of taking

an initialised probability table (field 2D 3-vector) which has primary

features along the first dimension, potential matches along the second

dimension and values of displacement and initial estimate of match

probability contained in the vector element, (** The array is more specific

than that and is described in the source code comments **), and determining

a sparse flow field, with an estimate of flow calculated for each of the
primary features. S
The result is a single flow field which contains copies of the ieft and

right original images (in vector positions 0,1) and a set of displacements

(vertical and horizontal) between the matched feature pairs (vector positions

2,3 respectively).
The relaxation scheme is based on neighbourhood support, where the neighbourhood 0
is calculated to be the <Neighbourhood> closest neighbours to the primary feature
(not including the primary feature in question).

The iterative relaxation algorithm is performed <ltera.,jns> times.

76 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

k INPUTS
Data Field (required; field 2D 4-vector uniform float)

This input holds the two original images in its first two bands.
The remaining two bands are empty.

Data Field (required; field 2D 3-vector float)
This input holds the initial probability estimates with other
relevant information, as follows.
Fieldli}0] holds {Xlocation,Ylocation,Number of Matchesi

of the primary feature T
Field[i]l1] holds 0,0,Prob(NoMatch)} for feature T
Field[i][j] holds (dX,dY,Prob) for the 'jth' match of feature

T, where {dX,dY} are displacements from feature T,
and (Prob) is the probability (estimate) that the 'jth'
match feature should be matched with the 'ith' feature.

Data Field (optional; field 2D uniform float)
This input is an optional feature field which may be used to
modify the neighbourhood search area. It is meaningless at the
moment (i.e. it is ignored).

* .
PARAMETERS

Neighbourhood
This value determines the size of the neighbourhood in terms of
the number of closest neighbours.

Iterations
This determines the number of times the relaxation calculation
is performed.

OUTPUTS
Data Field (required; field 2D 4-vector uniform float) S

These fields contains copies of the left and right input images
in the first "bands" (i.e. vector elements 0 and I respectively)
together with vertical and horizontal disparity information
in the last two "bands" (i.e. vector elements 2 and 3 respectiively).

EXAMPLE
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the

UNCLASSIFIED 77

*

ERL-0800-RR UNCLASSIFIED

purposes of this example it is assumed here that images are in AVS

image format (4 band) hence it is necessary to convert each to a scalar

field (i.e. single band) - other input file formats may be read with
alternate data input modules (e.g. "ip read vff') and may not require this
step).
The input fields are passed to the "M-:.:.-" module (written by James Kershaw
for the Shape Inference library) which in turn outputs two 2 band fields

contai-,uig copies of the input images (converted to type float) and the
Moravec Interest features.

These Moravec feature fields are then passed to an "lnit-Relax...." module
which sets up the probability table for relaxation. This table is then

input to "RelaxationNN" which carries out the flow calculation before passing
a flow field to the "draw lines" module (written by Garry Hamlyn for Shape
Inference), which enables the Image Viewer to display the flow vectors on
the original image (supplied independently).

READ IMAGE READ IMAGE

EXTRACT SCALAR EXTRACT SCALAR 0

+ ---------------+ +--------

I S

MORAVEC
S I

I I

INITRELAX(....... 1 I

S I

RELAXATIONNN I

I S

DRAW LINES I

I

IMAGE VIEWER

78 UNCLASSIFIED

me lmill I I I l* i0

UNCLASSIFIED ERL-0800-RR

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, INIT-RELAX(...)

SEE ALSO

Releasc 5 AVS RelaxationNN (6)

U 0

t[S

S

UNLSIID(.

ERL-0800-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR WGTDRELAX

AVS Modules WgtdRelax (6)

NAME

WgtdRelax - performs relaxation matching for a given initialised table.

SYNOPSIS

Name WgtdRelax

Availability ShapeInference module library

Type filter

Inputs field 2D 4-vector uniform float (REQUIRED)

field 2D 3-vector float (REQUIRED)

field 2D uniform float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

Parameters Name Type Default Min Max 0

Neighbourhood integer 6 1 100

Iterations integer 5 0 20

DESCRIPTION

This module implements a relaxation matching scheme capable of taking

an initialised probability table (field 2D 3-vector) which has primary

features along the first dimension, potential matches along the second

dimension and values of displacement and initial estimate of match

probability contained in the vector element, (** The array is more specific

than that and is described in the source code comments **), and determining

a sparse flow field, with an estimate of flow calculated for each of the

primary features.

The result is a single flow field which contains copies of the left and

right original images (in vector positions 0,1) and a set of displacements

(vertical and horizontal) between the matched feature pairs (vector positions

2,3 respectively). 0

The relaxation scheme is based on neighbourhood support, where the neighbourhood

is calculated as any primary feature within <Neighbourhood> pixels of the

primary feature (not including the primary feature in question). The support

provided is dependent upon the distance between the two features (feature and

80 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

neighbour) and is Gaussian in shape with a variance such that the largest

possible distance between features has a weighting of "0.1" and the closest

possible distance between features (0) has a weighting of "1.0".

The iterative relaxation algorithm is performed <Iterations> times.

INPUTS

Data Field (required; field 2D 4-vector uniform float)

This input holds the two original images in its first two bands.

The remaining two bands are empty.

Data Field (required; field 2D 3-vector float)

This input holds the initial probability estimates with other

relevant information, as follows.

Field[i][(0 holds {Xlocation,Ylocation,Number of Matches)

of the primary feature Ti'

Field[i][1] holds {0,0,Prob(NoMatch)} for feature T

Fieldfil[j] holds IdX,dY,Prob} for the 'jth' match of feature

T, where {dX,dY) are displacements from feature T,

and (Prob} is the probability (estimate) that the 'jth'

match feature should be matched with the 'ith' feature.

Data Field (optional; field 2D uniform float) '
This input is an optional feature field which may be used to

modify the neighbourhood search area. It is meaningless at the

moment (i.e. it is ignored).

PARAMETERS

Neighbourhood

This value determines the size of the neighbourhood (in pixels

from the primary feature).

Iterations

This determines the number of times the relaxation calculation •

is performed.

OUTPUTS

Data Field (required; field 2D 4-vector uniform float) 5

These fields contains copies of the left and right input images

in the first "bands" (i.e. vector elements 0 and I respectively)

together with vertical and horizontal disparity information

in the last two "bands" (i.e. vector elements 2 and 3 respectively).

UNCLASSIFIED 81

0 •

-[. . ,m =,aW • rm o= a at .. i .. ,lunmllnn~lma .• i •

ERL-080-RR UNCLASSIFIED

EXAMPLE

This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the

purposes of this example it is assumed here that images are in AVS

image format (4 band) hence it is necessary to convert each to a scalar

field (i.e. single band) - other input file formats may be read with

alternate data input modules (e.g. "ip read vff') and may not require this

step).

The input fields are passed to the "Moravec" module (written by James Kershaw
for the Shape Inference library) which in turn outputs two 2 band fields

containing copies of the input images (converted to type float) and the

Moravec Interest features.

These Moravec feature fields are then passed to an "Init-Relax...." module
which sets up the probability table for relaxation. This table is then

input to "Wgtd-Relax" which carries out the flow calculation before passing
a flow field to the "draw lines" module (written by Garry Hamlyn for Shape

Inference), which enables the Image Viewer to display the flow vectors on

the original image (supplied independently).

READ IMAGE READ IMAGE * *

EXTRACT SCALAR EXTRACT SCALAR

+ ---------------- + ------
I II

MORAVEC I

I I S

INI..RELAX(........ I

I I

I I I

WGTD RELAX I

I

DRAW LINES I

+-

IMAGE VIEWER

82 UNCLASSIFIED

i =='" , . ' nu.. i..,!lI Jl ill I-* ,i0

UNCLASSIFIED ERL-0800-RR

RELATED MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, INIT-RELAX(...)

SEE ALSO

Re!e•,o 5 AVS WgtdRelax (6)

U

(

UNCLASSIFIED 83".

e

EFRL-08OO-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR WGTDRELAXNN

AVS Modules WgtdRelaxNN (6)

NAME
WgtdRelaxLNN - performs relaxation matching for a given initialised table.

SYNOPSIS
Name Wgtd_ RelaxNN

Availability ShapeInference module library

Type filter

Inputs field 2D 4-vector uniform float (REQUIRED)

field 2D 3-vector float (REQUIRED)
field 2D uniform float (OPTIONAL)

Outputs field 2D 2-space 4-vector uniform float

Parameters Name Type Default Min Max p

Neighbourhood integer 6 1 100
Iterations integer 5 0 20

DESCRIPTION
This module implements a relaxation matching scheme capable of taking
an initialised probability table (field 2D 3-vector) which has primary
features along the first dimension, potential matches along the second
dimension and values of displacement and initial estimate of match
probability contained in the vector element, (** The array is more specific

than that and is described in the source code comments **), and determining

a sparse flow field, with an estimate of flow calculated for each of the
primary features. 0
The result is a single flow field which contains copies of the left and

right original images (in vector positions 0,1) and a set of displacements
(vertical and horizontal) between the matched feature pairs (vector positions

2,3 respectively).
The relaxation scheme is ba-cd on neighbourhood support, where the neighbourhood
is calculated as the <Neighbourhood> closest neighbouring features of the

primary feature (not including the primary feature in question). The support
provided is dependent upon the order of closeness between the two features

84 UNCLASSIFIED

S.. . - -= -- i •i i I II • I I I 1 I i I I •11I - I I... . . S

UNCLASSIFIED ERL-0800-RR

(feature and neighbour) and is Gaussian in shape with a variance such that the

last position in the match list has a weighting of "0.1".

The iterative relaxation algorithm is performed <Iterations> times.

INPUTS

Data Field (required; field 2D 4-vector uniform float)

This input holds the two original images in its first two bands.

The remaining two bands are empty.

Data Field (required; field 2D 3-vector float)

This input holds the initial probability estimates with other

relevant information, as follows.

Field[i]l0] holds (Xlocation,Ylocation,Number of Matches)

of the primary feature T

Fieldli]I1] holds [0,0,Prob(NoMatch)l for feature T

Field[i][j] holds {dX,dY,Probl for the 'jth' match of feature
T, where {dX,dYj are displacements from feature T,

and {Prob) is the probability (estimate) that the 'jth'

match feature should be matched with the 'ith' feature.

Data Field (optional; field 2D uniform float)

This input is an optional feature field which may be used to

modify the neighbourhood search area. It is meaningless at the

moment (i.e. it is ignored).

PARAMETERS

Neighbourhood

This value determines the size of the neighbourhood (in number of

valid neighbours).

Iterations

This determines the number of times the relaxation calculation

is performed.

OUTPUTS

Data Field (required; field 2D 4-vector uniform float)

These fields contains copies of the left and right input images

in the first "bands" (i.e. vector elements 0 and I respectively)

together with vertical and horizontal disparity information
in the last two "bands" (i.e. vector elements 2 and 3 respectively).

UNCLASSIFIED 85

F _____ 0 0 imi iml liilii•l

ERL-O600-RR UNCLASSIFIED

EXAMPLE I
This example shows the left and right images read in by means of two
"read image" modules and converted to "single band" grey images (for the
purposes of this example it is assumed here that images are in AVS
image format (4 band) hence it is necessary to convert each to a scalar

field (i.e. single band) - other input file formats may be read with
alternate data input modules (e.g. "ip read vff') and may not require this
step).
The input fields are passed to the "Moravec" module (written by James Kershaw
for the Shape Inference library) which in turn outputs two 2 band fields
containing copies of the input images (converted to type float) and the
Moravec Interest features.
These Moravec feature fields are then passed to an "lnitRelax..... module
which sets up the probability table for relaxation. This table is then
input to "WgtdRelaxNN" which carries out the flow calculation before passing
a flow field to the "draw lines" module (written by Garry Hamlyn for Shape
Inference), which enables the Image Viewer to display the flow vectors on
the original image (supplied independently).

READ IMAGE READ IMAGE

* .

EXTRACT SCALAR EXTRACT SCALAR

I II
IIII

MORAVEC I
I I

S I I

INITRELAX(....... I
I I

I I

WGTDRELAXNN I

I

DRAW LINES I

IMAGE VIEWER

86 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR

RELAT-D MODULES

MORAVEC, FEX, DRAW LINES, HANNAH, INITRELAX(...)

SEE ALSO

Release 5 AVS Wgtd-RelaxNN (6)

* 0

0

UNCLASSIFIED 87

ERL-O800-RR UNCLASSIFIED

AVS ON-LINE HELP PAGE FOR HANNAH MATCHING

AVS Modules Hannah matching(6)

NAME

Hannah matching - perform stereo image matching using Hannah algorithm

SYNOPSIS

Name Hannah matching

Availability Sha, inference module library

Type filter

Inputs field 2D 2-space 1-vector uniform byte (REQUIRED)

field 2D 2-space 1-vector uniform byte (REQUIRED)

Outputs field 2D 4-vector uniform float

Parameters Name Type Default Mm Max

window size integer 11 1 20
num x subimages integer 6 1 20

num y subimages integer 6 1 20

num uhm points integer 1 1 10

int points per cell integer 1 1 10

I
DESCRIPTION

This module implements the first stage of a stereo image matching algorithm created

by Marsha Jo Hannah, Artificial Intelligence Center, SRI International, and

described in PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, Vol

55, No. 12, December 1989, pp 1765-1770. The algorithm ,ssentially uses area based S
correlation coupled with a variety of hierarchical search techniques including back

matching. Only the first stage, which Hannah refers to as "unconstrained

hierarchical matching", has been implemented to date. Further stages (not yet

implemented) will make use of camera models (known or estimated) and epipolar

constraints, culminating with an "anchored matching" technique based on the

reliable set of matches obtained by all of the preceding techniques.

INPUTS

Data Field (required; field 2D 2-space 1-vector uniform byte) •

Dat, Hield (required; field 2D 2-space 1-vector uniform byte)
The inputs are a pair of "single band" grey scale images. It is assumed that

the images exhibit similar characteristics, i.e. they cover approximately the

88 UNCLASSIFIED

UNCLASSIFIED ERL-0O00-RR

same area at about the same scale with no major rotation between the images
nor any significant time-lapse changes.

PARAMETERS A

window size
The size (in pixels) of the correlation window used for the correlation
matching performed during "unconstrained hierarchical matching" (first
stage of the Hannah algorithm). The default value is set to 11 as suggested
by Hannah.

num x subimago
nun' y sublinagm

The original input images are divided up into a regular grid of "subimages" or
"cells" for subsequent processing. These parameters determine the grid
spacings by setting the number of divisions in the x and y directions. For
example, setting "num x subimages" = 6 and "num y subimages" = 4 gives a

total of 6 x 4 = 24 subimages. The default values for each are set to 6 as
suggested by Hannah.

int points per cell
By passing a statistical "interest operator" over the original images an
"interest value" is obtained for each image pixel. The "int points per cell"
parameter allows all but the top <int points per cell> of these for each
subimage or cell to be disregarded, thus permitting only the most interesting
points to be matched. Note that each of these points is a distinct local
maxima. The default value has been set to 1 only so that in the first instance

the module executes more quickly.

nun' uhm points
This parameter determines how many of the above mentioned <int points per
cell> (in order of merit) will undergo "unconstrained hierarchical matching".
The default value has been set to 1 to again enable faster execution in the first
instance.

OUTPUTS 0
Data Field (required: field 2D 2-space 4-vector uniform float)

This field contains copies of the left and right input images in the first two
"bands" (i.e. vector elements 0 and 1), together with pixel y and x disparity
information m the last two "bands" (i.e. vector elements 2 and 3 respectively).

0

UNCLASSIFIED 89

* 0

ERL-OOO-RR UNCLASSIFIED

EXAMPLE
This example shows the left and right images read in by means of two "read image"
modules and converted to "single band" grey images (for the purposes of this example
it is assumed here that images are in AVS image format (4 band) hence it is necessary

to convert each to a scalar field (i.e. single band) - other input file formats may be
read with alternate data input modules (e.g. "ip read vff') and may not require this

step).

The input fields are passed to the "Hannah matching" module which in turn outputs
a 4 band field containing copies of the input images (converted to type float) and the

x and y direction disparity information. The "draw lines" module extracts the

disparity information and uses it to graphically overlay "disparity vectors" onto a

copy of one of the original images ("draw lines" was built by Garry Hamlyn DSTO
from a variation of a supplied AVS example source code file
(/usr/avs/examples/doodle.c) and is also in the "Shapelnference" module library).
In this example the copy of the original image is obtained via the Hannah output; it

could just as easily have been channelled from one of the data input modules instead.
The copy of one of the original images is also passed to the image viewer module for
display (note that an upstream feedback connection to the "draw lines" module is

required).

9 0

S

S

90 UNCLASSIFIED ,

UNCLASSIFIED ERL-0800-RR

READ IMAGE READ IMAGE

I I

EXTRACT SCALAR EXTRACT SCALAR

------------- - +------

EXTRACT SCALAR

IFIELD TO BYTE

--I ------- +

S I t

II I

DRANNA MATCHIN

IMAGE VIEWER

IS

RELAT7ED MODULES

draw lines

SEE ALSO

Release 5 AVS Hannah matching(6)

UI

UNFIELSITOEDY91

0

ERL-08o-RR UNCLASSIFIED

THIS IS A BLANK PAGE

92 UNCLASSIFIED

UNCLASSIFIED ERL-0800-RR t

DISTRIBUTION

Copy No.

Defence Science and Technology Organisation

Chef Dence Scientist

Central Office Executive) 1 shared copy

Counsellor, Defence Science, London Cont Sht

Counsellor, Defence Science, Washington Cont Sht

Senior Defence Scientific Adviser I copy

Scientific Adviser POLCOM I copy

Director, Aeronautical & Maritime Research Laboratory 1 copy

Navy Office

Naval Scientific Adviser 1 copy

Army Office

Scientific Adviser, Army 1 copy

Airforce Office

Air Force Scientific Adviser 1 copy

Defence Intelligence Organisation

Assistant Secretary Scientific Analysis I copy *

CSSIP

Director I copy

Assoc. Prof. M. Brooks 1 copy

Mr. M. Baker 1 copy

Mr. Chunping Ding I copy

Mr. D. Gibbins 1 copy

Dr. D. Huynh 1 copy

Electronics & Surveillance Research Laboratory S

Director 1 copy

Chief Information Technology Division I copy

Chief Electronic Warfare Division Cont Sht

Chief Guided Weapons Division

Chief Communications Division 0

Chief Land, Space and Optoelectronics Division

Chief High Frequency Radar Division

Chief Microwave Radar Division

Chief Air Orrations Division

Chief Maritime Operations Division 0
Research Leader Command & Control and Intelligence Systems 1 copy

Research Leader Military Computing Systems 1 copy

Research Leader Command, Control and Communications 1 copy

Head, Information Acquisition & Processing Group 1 copy

UNCLASSIFIED 93

ERL-O800-RR UNCLASSIFIED

DISTRIBUTION

Copy No.
Dr M. Nelson, Information Acquisition & Processing Group 1 copy
Dr. V. Shettigara, Information Acquisition & Processing Group I copy
Mr. P. Deer, Information Acquisition & Processing Group I copy

Head, Information Management Group I copy
Dr. G. Newsam, Information Management Group I copy
Dr. N. Redding, Information Management Group 1 copy
Mr. R. Whatmough, Information Management Group 1 copy
Mr. K. Tang, Information Management Group 1 copy
Dr. P. Whitbread, Irformation Management Group 1 copy

Head Intelligence Systems Group 2 copies
Dr. J. Hildebrandt, Intelligence Systems Group 2 copies

Head Command Support Systems Group 1 copy
James Kershaw (Author), Intelligence Systems Group 2 copies
Garry Hamlyn (Author), Information Management Group 2 copies
Publications & Publicity Officer ITD 1 copy

Libraries and Information Services
Australian Government Publishing Service I copy
Defence Central Library, Technical Reports Centre I copy
Manager, Document Exchange Centre, (for retention) I copy

National Technical Information Service, United States 2 copies
Defence Research Information Centre, United Kingdom 2 copies
Director Scientific Information Services, Canada 1 copy
Ministry of Defence, New Zealand I copy
National Library of Australia 1 copy

Defence Science and Technology Organisation Salisbury, Research Library 2 copies
Library Defence Signals Directorate Canberra 1 copy
British Library Document Supply Centre 1 copy
Parliamentary Library of South Australia I copy
The State Library of South Australia 1 copy

Spares
Defence Science and Technology Organisation Salisbury, Research Library 6 copies

94 UNCLASSIFIED

S. • am • nman • dnm m ro l . . . |- ind •* 0

1. Page Classification
(

Department of Defence Unclasiie

DOCUMENT CONTROL DATA SHEET 2 Privacy Marking/Caveat

(of document

3a. AR Number 3b. Laboratory Number 3c. Type of Report 4. Task Number p

AR-00-839 ERL-0800-RR Research Report DEF 93/163

5. Document Date 6. Cost Code 7. Security Classification 8. No. of Pages 100

JUNE 1994 252
10. Title E 9 No. of Refs. 13

Document Title Abstract
MODULAR IMPLEMENTATION OF FEATURE
EXTRACTION AND MATCHING ALGORITHMS S (Secret) C (Conti) R (Rest) U (Unclass)
FOR PHOTOGRAMMETRIC STEREO IMAGERY For UNCLASSIFIED docs with a secondary distribution

LIMITATION, use (L) in document box.

11. Author(s) 12. Downgrading/Delimiting Instructions

James Kershaw and Garry Hamlyn NA

13a. Corporate Author and Address 14. Officer/Position responsible for

Electronics & Surveillance Research Laboratory Security: ..
PO Box 1500, Salisbury SA 5108

D ow ngrading : ...
13b. Task Sponsor

DIO Approval forRelease:...DERL

15. Secondary Release Statement of this Document

APPROVED FOR PUBLIC RELEASE

16a. Deliberate Announcement

No Limitation

16b. Casual Announcement (for citation in other documents)

EDNo Limitation Ref. by Author, Doc No. and date only.

17. DEFTEST Descriptors 18. DISCAT Subject Codes

Image Analysis
Image Interpretation
Matching 12

Algorithms 0
Three dimensional

19. Abstract
This paper describes the implementation of algorithms for automatically extracting and matching features
in stereo pairs of images. The implementation has been designed to be as modular as possible to allow
different algorithms for each stage in the matching process to be combined in the most appropriate 4
manner for each particular problem. The modules have been implemented in the AVS environment but are
designed to be portable to any platform.

This work has been undertaken as part of task DEF 93/163 "Intelligence Analysis of Imagery", and forms
part of ITD's contribution to the Visual Processing research program in the Centre for Sensor System and
Information Processing. A major aim of both the task and the research program is to produce software to 0
assist intelligence analysts in extracting three dimensional shape from imagery: the algorithms and
software described here will form the first part of a module for automatically extracting depth information
from stereo image pairs.
Isses 8 Doc. Sea WF7I

* 0

